Défense de thèse de doctorat en informatique - Antoine Gratia
Topological Architecture Exploration and Neuroevolution for Energy-aware Neural Architecture Search.
Topological Architecture Exploration and Neuroevolution for Energy-aware Neural Architecture Search.
Deep learning has become an extremely important technology in numerous domains such as computer vision, natural language processing, and autonomous systems. As neural networks grow in size and complexity to meet the demands of these applications, the cost of designing and training efficient models continues to rise in computation and energy consumption. Neural Architecture Search (NAS) has emerged as a promising solution to automate the design of performant neural networks. However, conventional NAS methods often require evaluating thousands of architectures, making them extremely resource-intensive and environmentally costly.
This thesis introduces a novel, energy-aware NAS pipeline that operates at the intersection of Software Engineering and Machine Learning. We present CNNGen, a domain-specific generator for convolutional architectures, combined with performance and energy predictors to drastically reduce the number of architectures that need full training. These predictors are integrated into a multi-objective genetic algorithm (NSGA-II), enabling an efficient search for architectures that balance accuracy and energy consumption.
Our approach explores a variety of prediction strategies, including sequence-based models, image-based representations, and deep metric learning, to estimate model quality from partial or symbolic representations. We validate our framework across three benchmark datasets, CIFAR-10, CIFAR-100, and Fashion-MNIST, demonstrating that it can produce results comparable to state-of-the-art architectures with significantly lower computational cost. By reducing the environmental footprint of NAS while maintaining high performance, this work contributes to the growing field of Green AI and highlights the value of predictive modelling in scalable and sustainable deep learning workflows.
La défense publique sera suivie d'une réception.
Inscription obligatoire.