Présentation de l'Unité de système dynamique

L'unité de Systèmes dynamiques s'est spécialisée dans plusieurs directions :

  • la mécanique céleste, la planétologie, la géodésie spatiale, dans le cadre de la dynamique du Système Solaire ou des exoplanètes. Le comportement à long terme et la stabilité, les résonances orbitales ou de spin-orbite y sont particulièrement étudiés.
  • la dynamique chaotique des systèmes hamiltoniens est étudiée, via la théorie des perturbations, l'invariant adiabatique, l'analyse en fréquence ou la moyennisation.
  • des méthodes numériques pour l'intégration symplectique et le calculs des indicateurs de chaos.
  • les systèmes dynamiques génériques, orbites périodiques, cycles limites, formes normales, petits diviseurs.
  • les méthodes propres aux systèmes dynamiques sont appliquées à d'autres domaines : notamment aux accélérateurs des particules et à leur contrôle, à la biologie (modèles de protocellules : stabilité et évolution), la socio-dynamique (modèles de dynamique d'opinions et de formation de groups de consentement), économie (modèles d'évolution des marchés), à la médicine (étude des nouvelles techniques pour la détermination de certaines maladies neurodégénératives : Parkinson, ALS, Huntington).
  • la cosmologie, notamment la modélisation conjointe de la matière sombre et de l'énergie noire, les simulations N-corps de formation des structures,ainsi que la dérivation de contraintes observationnelles.
  • la relativité générale et ses extensions de type tenseur-scalaire, l'étude numérique des équations d'Einstein, ainsi que certaines approches de sa quantification.
  • la modélisation des systèmes par des équations aux dérivées partielles
    (par exemple systèmes de réaction-diffusion).