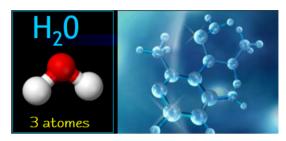
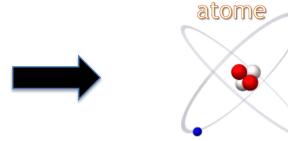
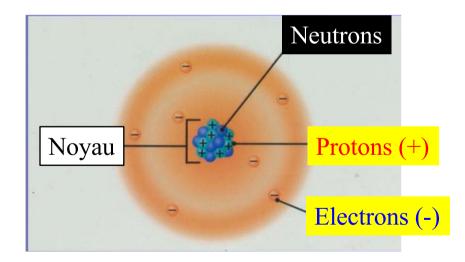
Formation en radioprotection Version 2020 senior T. Mayenne, O. Donnez Cellule de Radioprotection

radioprotection@unamur.be

Ext. 5349, 5340




La matière



Les constituants de la matière

Molécule

Le noyau de l'atome

Nombre de masse atomique => Nucléons P & N

A Symbole chimique

Numéro atomique = $P(e^{-})$

$$A - Z =$$
 nombre de neutrons (N)

$$Z = 1$$
 H Hydrogène 1 H

 $Z = 6$ C Carbone 12 C

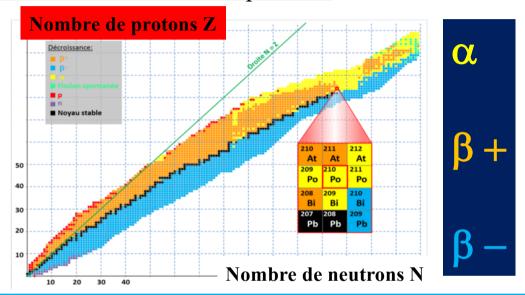
 $Z = 92$ U Uranium 238 6 U

La radioactivité


Qu'est ce que la radioactivité?

Radioactivité: Propriété qu'ont certains noyaux d'émettre de manière naturelle et spontanée des particules et des rayonnements électromagnétiques.

Un noyau radioactif se «désintègre » en produisant un noyau fils. Le noyau fils formé appartient à un autre élément que le noyau père.

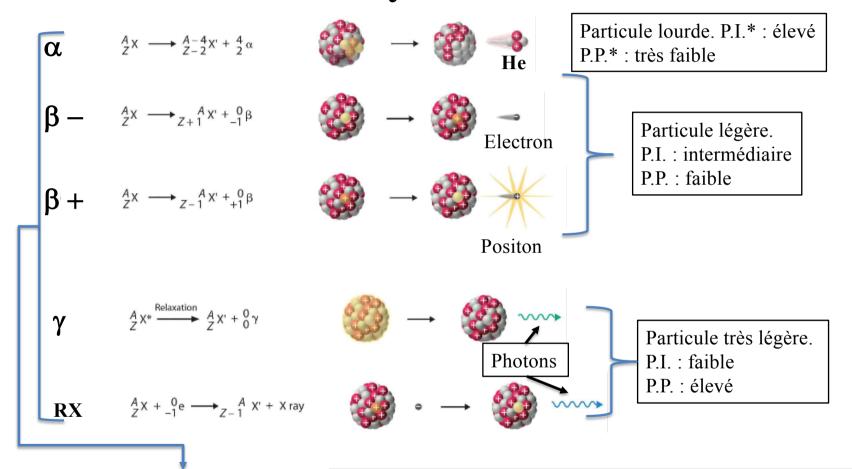

On distingue:

- La radioactivité naturelle 68 %
- La radioactivité artificielle 32 %

La radioactivité

Relation entre nombre de neutrons et de protons:

• Les éléments qui possèdent trop ou trop peu de neutrons ou de protons sont instables et tendent à revenir vers un état plus stable, moins énergétique.



Radioactivité

Type de rayonnements

Résumé sur les rayonnements ionisants

UNamur

*P.I. : Pouvoir ionisant, P.P. : Pouvoir de pénétration

Effets biologiques des rayonnements ionisants

Caractérisation du rayonnement

Pour caractériser correctement un rayonnement et son effet, il faut connaître:

La source:

- Activité (Nombre de désintégration/secondes)
- La demi-vie de la source $(T_{1/2})$
- L'énergie du rayonnement émis (keV)

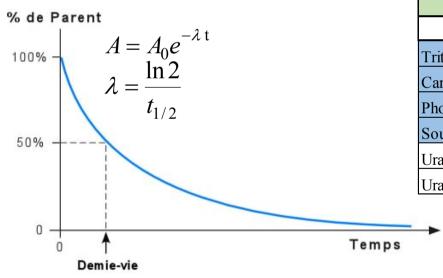
La dose:

- Reçue (Dose absorbée)
- L' effet (Equivalent de dose)
- Le débit d'équivalent de dose

La source:

1) <u>Activité</u>

Nombre de désintégrations par unité de temps : **Becquerel** (Bq) ou Curie (Ci) $1 \text{ Bq} = 1 \text{ désintégration par seconde}, <math>1 \text{ Ci} = 37 \times 10^9 \text{ Bq}$

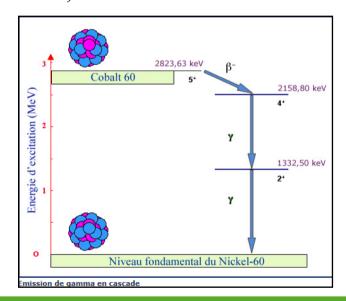

Grandeur Physique

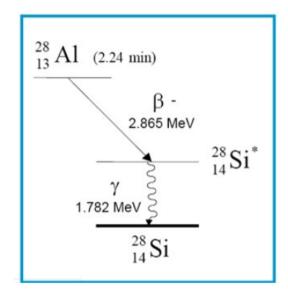
La source:

2. <u>Demi-Vie physique</u>

Temps nécessaire pour que la moitié des atomes radioactifs se soit désintégré

Périodes radioactives de quelques isotopes									
Isotope		Période	Emetteur	β E _(max) (KeV)	γE (KeV)				
Tritium	^{3}H	12,3 ans	β	19	0				
Carbone	¹⁴ C	5730 ans	β	157	0				
Phosphore	³² P	14, 3 jours	β	1710	0				
Soufre	^{35}S	87,5 jours	β	168	0				
Uranium 235	²³⁵ U	703,8 millions d'annèes	αγ	4679	160				
Uranium 238	²³⁸ U	4,5 millards d'années	α	4270					


Sources non scellées UNamur


!! La radioactivité diminue mais ne disparaît jamais. !!

La source:

3) Energie du rayonnement émis (eV)

C'est l'**énergie** acquise par un **électron** soumis à un potentiel électrique de 1V. Ainsi, on a 1eV=1,6 10⁻¹⁹J, c'est donc une unité très faible. Les multiples sont le keV=10³ eV, le MeV=10⁶ eV, le GeV=10⁹ eV...

La dose:

Dose absorbée D: Est la quantité d'énergie absorbée par unité de masse. Elle est exprimée en Gray (Gy)

1 Gray = 1 J/Kg, 1 Gray = 100 rad (dépôt d'énergie)

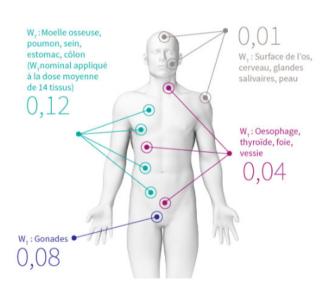
Grandeur Physique

La dose:

Dose équivalente H: Est le produit de la dose absorbée (D) par le facteur de pondération (W_r) qui dépend des propriétés des radiations ionisantes. Unité Sievert (Sv)

L'effet laissé sur son corps selon le poids ou la taille des pommes peut se comparer au Sievert (effet produit)

Type de radiation	Wr
X, γ, β	1
α, n	20
P	5

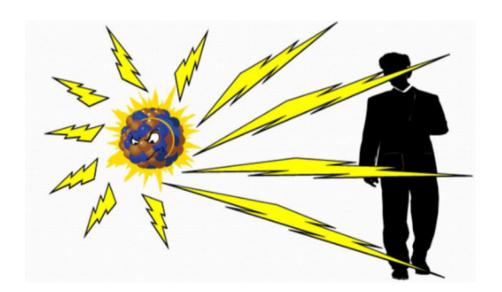

A l'UNamur, Sievert = Gray Sauf au LARN

Dose équivalente H = Dose absorbée $D \times facteur$ de pondération W_r

Grandeur biologique

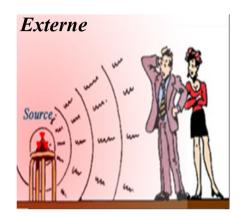
La dose:

Dose efficace E: Est le produit de dose équivalente (H) par le facteur de sensibilité du tissus affecté (W_t). Unité Sievert (Sv)



Dose efficace E = Dose équivalente $H \times facteur$ de pondération W_t

Grandeur biologique


La dose:

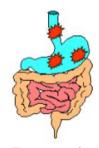
Débite de dose: Permet d'estimer l'équivalent de dose obtenu après un certain temps dans un champs d'irradiation constant. Unité Sievert par heure (Sv/h)

Irradiation versus contamination

Irradiation

Interne

Contamination


Externe

Interne

Inhalation

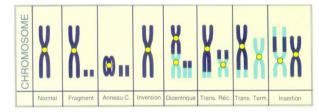
Ingestion

Blessure

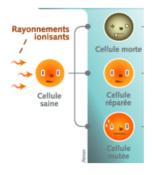
Une contamination interne diminue suivant deux voies:

- ➤ Décroissance de la source (demi-vie physique)
- ➤ Elimination naturelle (demi-vie d'élimination biologique)

Les effets des radiations ionisantes


- 1. Sur les molécules
- 2.Sur l'ADN
- 3. Sur les chromosomes
- 4. Sur les cellules
- 5. Sur les organes
- 6. Sur les organismes

1 H₂O[†] H₂O + H^{*}


2

3

.

5

Limite de doses : Aspect législatif

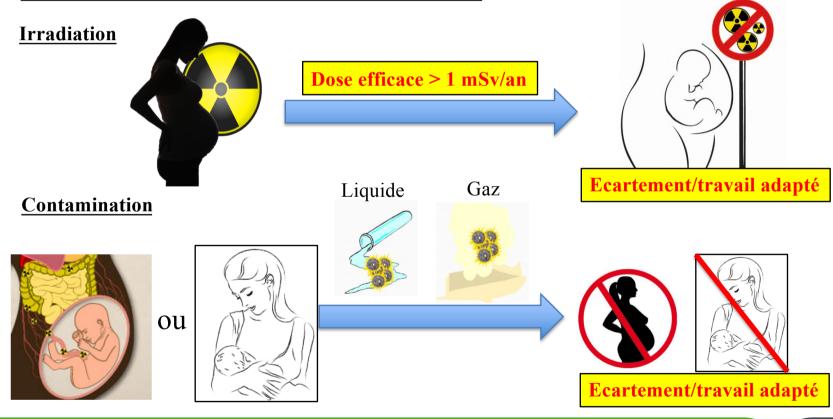
Les limites de doses

Norme belge (AR 20/07/01 (art. 20))

Dose efficace

1. Public:

1 mSv/an


2. Travailleur professionnellement exposé (PPE) :

20 mSv/ 12 mois consécutifs glissant

Les limites de doses

Norme belge (AR 20/07/01 (art. 20)

Protection de la femme enceinte

Principe de précaution & ALARA

Les 3 principes de base de la radioprotection

La radioprotection : c'est ensemble des dispositions prises pour protéger les travailleurs et le public

1. Justification

L'utilisation d'une pratique doit être justifiée par le fait que l'on ne pourrait pas atteindre le même but sans son utilisation.

BÉNÉFICES ATTENDUS > DÉTRIMENT SANITAIRE

2. ALARA: As Low As Reasonably Achievable
La dose reçue par chacun du fait de la pratique doit rester aussi faible qu'il est
raisonnablement possible.

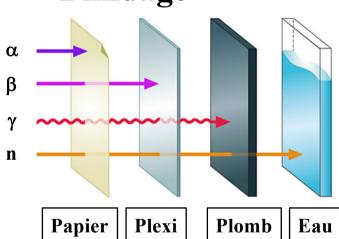
3. Limite de dose

Elle ne peut être dépassée.

Protection contre l'irradiation Art 27 AR

Principe ALARA: As Low As Reasonably Achievable

Distance


Débit de dose $=1/d^2$

Temps

La dose prise est proportionnelle au temps d'exposition

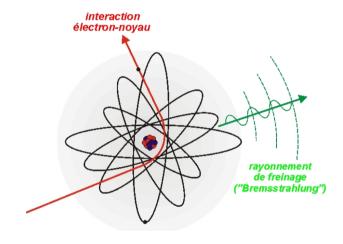
Blindage

Protection contre l'irradiation Art 27 AR

Principe ALARA: As Low As Reasonably Achievable

2. Blindage

β, α : parcours dans la matière


Isotope	Energie (MeV)	Eau (cm)	Air (cm)	Plexiglass (cm)
$^{32}P(\beta)$	1.7 Max	0.8	603	0.61 (! B)
$^{33}P(\beta)$	0.249 Max		89	0.89
$^{35}\mathrm{S}\left(\beta\right)$	0.167 (Max)		26	0.85
³ H (β)	0.0186 Max	0.0006	0.6	
14C	0.056	0.3	24	0.25
α	5	0.04	5	

Pas de Pb pour le ³²P

Protection contre l'irradiation Art 27 AR

2. Blindage

protection radiation gamma

résine acrylique imprégnée de plomb épaisseur 12 mm

Caractéristiques équivalentes à une feuille de plomb d'épaisseur 0,5 mm arrêtant les émissions radioactives de ¹²⁵I. Une source de 74 MBq placée à 20 cm d'un écran de protection voit son activité chuter de 5000 à 4 cps.

attention

Les écrans ne doivent pas être utilisés en présence de rayonnements β car il y a production de rayons X (Brennstrahlung).

Les écrans de protections γ, épaisseur 12 mm, ne doivent pas être utilisés avec des isotopes d'énergie supérieure à celle de l'¹²⁵l. Une épaisseur de 35 mm est nécessaire pour arrêter les émissions des sources ¹³³l, ⁵⁷Co et ⁶⁷Ga.

critères de choix

Plus la surface de l'écran est importante, plus votre sécurité est assurée.

Un écran à bords incurvés facilite l'accès à l'aire de travail.

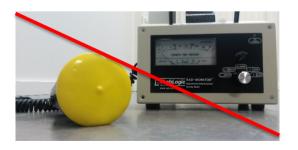
Ecran incliné à 15° pour travail en position assise.

Ecran incliné à 45° en partie haute, pour travail en position debout.

1768 • protection radiation

Attention aux effets non désirés des écrans de protection

Les moyens de détection


Protection contre l'irradiation

Comment estimer l'irradiation?

Utiliser le détecteur adéquat

- Comprendre les unités (Rem, Sv) et son fonctionnement (β ?).
- Vérifier son état de fonctionnement (batterie).
- Mettre sur la plus petite échelle.
- Evaluer le débit de dose à bout de bras.
- Si signal est saturé, changer d'échelle.
- Noter et améliorer la protection le cas échéant.

Pas en Cp/s ou Bq Mais en Sv/h!!

Protection contre la contamination

Comment estimer une contamination?

Utiliser le détecteur adéquat

Pas en Sv/h Mais en Cp/s ou Bq!!

La dosimétrie

Dosimétrie

Dosimètre personnel

Dosimètre thermo luminescent (TLD)

- Pastilles de Borate de Lithium ou de Sulfate de Calcium de densités différentes placées derrière différents types d'écrans.
- <u>L'énergie déposée</u> est emmagasinée dans les différentes pastilles.
- Analyse via un système de chauffe.
- Plus l'énergie emmagasinée est importante plus l'intensité lumineuse émise sera importante lors de la chauffe.

!!! Ce ne sont pas des dosimètres à lecture directe Ils ne mesurent pas un débit de dose !!! Ils peuvent se porter à la poitrine ou au doigts

Dosimétrie

Dosimètre électronique

- Cristal semi-conducteur sensible aux radiations ionisantes
- Lecture de la dosimétrie en temps réel
- Equipé de seuils d'alarmes (dose, débit de dose)
- Gamme de dose 1 μSv à 10 Sv
- Gamme d'énergie 50 KeV à 6 MeV

Utiliser par:

- Visiteur exterieur (Professeur, Chercheur, Stagiaire)
- Le personnel de maintenance UNamur
- Le personnel des firmes extérieures
- Le personnel SCP en cas d'accident ou incident

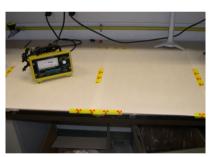
Les bonnes pratique en laboratoire

Les bonnes pratiques en laboratoire Signaux d'avertissements

Sur la porte de la zone (extérieur):

- Intensité de radiation très élevée (si H > 1000 μ Sv/h)
- Intensité de radiation élevée (si H > 200 μ Sv/h)
- Radiations ionisantes (si H > 20 μ Sv/h)
- Danger de contamination radioactive

Les bonnes pratiques en laboratoire


Avant d'entrer en zone contrôlée

- Porter un tablier fermé A TOUT MOMENT.
- Mettre son dosimètre au niveau de la poitrine.
- Noter dans un registre nom, date, isotope, expérience.

Avant l'expérience

- Porter DEUX paires de gants.
- Vérifier avec le compteur adéquat, si il y a une contamination sur la paillasse....
- Protéger les surfaces avec du papier plastifiée (Benchcoat), plastique contre la paillasse.
- Coller le papier avec des adhésifs « logo radioactif »
- Préparer le matériel nécessaire pour l'expérience à porter de main.
- Eloigner ou ranger la source mère de la zone d'expérimentation.

Moyens de protection

- Réduire le temps
- Augmenter la distance
- S'abriter derrière des écrans

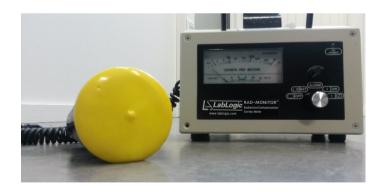
Les bonnes pratiques en laboratoire

Pendant l'expérience

- Changer sa première paire de gants régulièrement.
- Vérifier les bouts des doigts après ouverture de tubes pour contamination.
- Utiliser un écran à bon escient, il n'est utile que si on se trouve derrière.

Récipients contenant des substances radioactives

• Ne concerne pas les récipients de labo pendant leur utilisation et lors de la présence de la personne.


- Quantité, nature chimique.
- Nature des rayonnements.
 - Débit de dose (ou Activité) au contact + date.

!!!! A faire !!!!

Les bonnes pratiques en laboratoire

Après l'expérience

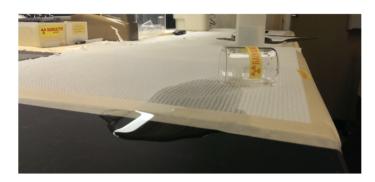
- Vérifier une probable contamination avec le compteur adéquat.
 - Les racks pour les tubes, la paillasse, écran de protection.
 - Soi même.
- Jeter les déchets dans les récipients appropriés.
- Se laver les mains.

Les bonnes pratiques en laboratoire Le risque de contamination

Comment vérifier la contamination de manière directe?

Utiliser le détecteur adéquat

- Vérifier son état de fonctionnement (batterie).
- Mettre sur la plus petite échelle, option audible « On » et enlever l'écran de blindage des β.
- Passez la sonde lentement au dessus de la zone de travail/corps.
- Si signal est saturé, changer d'échelle.
- Noter et décontaminer le cas échéant.


Comment vérifier la contamination de manière indirecte?

Efficacité = 50 % (nécessite un transfert de matière)

- Prendre appareil de mesure adéquat, vérifier son état de fonctionnement et sa configuration (blindage β).
- A l'aide d'un papier absorbant, frotter la zone de travail.
- S'éloigner de la zone de travail (rester dans le local!!) et vérifier la contamination du papier.
- Noter et décontaminer le cas échéant.

Que faire quand on a renversé un liquide radioactif?

D'une manière générale:

- Ne pas s'enfuir !!!
- Absorbé un maximum de liquide avec du papier absorbant qui se trouve dans le kit de décontamination.
- Si possible, placer le matériel contaminé dans un sac avec autocollant « radioactif ».
- Délimiter la zone et au besoin fermer le local si grande surface impactée.
- Se tester et empêcher la dissémination (!!! chaussures).
- Les personnes contaminées restent dans le local ou a proximité.
- Prévenir le relais radioprotection permanent de l'unité.
- Prévenir le cellule de radioprotection en précisant l'étendue du problème si incident de grande importance.

Décontamination de matériel/plans de travail

- Préparer des sacs, un marqueur et du papier absorbant.
- Mettre doubles gants.
- A l'aide de papier absorbant et de détergent de décontamination (RBS-35 dilué 50 fois), pratiquer la décontamination.
- Répéter jusque disparition complète, en changeant de papier.
- •Vérifier les papiers, tests de contamination.
- Traiter les déchets comme déchets radioactifs.
- Recommander le kit de décontamination.
- S'il subsiste une contamination malgré les efforts :
 - Prévenir la cellule de radioprotection.
 - Bien délimiter pour prévenir l'accès.

Décontamination de matériel/plans de travail

- Laver la surface du corps contaminée au dessus d'un récipient étanche.
- Vérifier et recommencer le lavage si nécessaire.
- Traiter le liquide de lavage comme déchet radioactif.
- Vérifier savon, robinet, poignées,
- Prévenir la cellule de radioprotection

PROCEDURES POUR LES DECHETS

Procédure déchet

Gestion des déchets à l'UNamur

Récolte, traitement et élimination des déchets radioactifs :

- Déchets solides et liquides:
 - Eviter risques de dispersion et fermentation (liquide)
 - Doivent être stockés (10 x T_{1/2}) et ensuite évacués si concentration inférieure aux normes fixées dans AR.

• Déchets gazeux :

• Rejet autorisé si concentration inférieure à la limite fixée par AR (dilution possible).

La procédure se trouve sur l'intranet

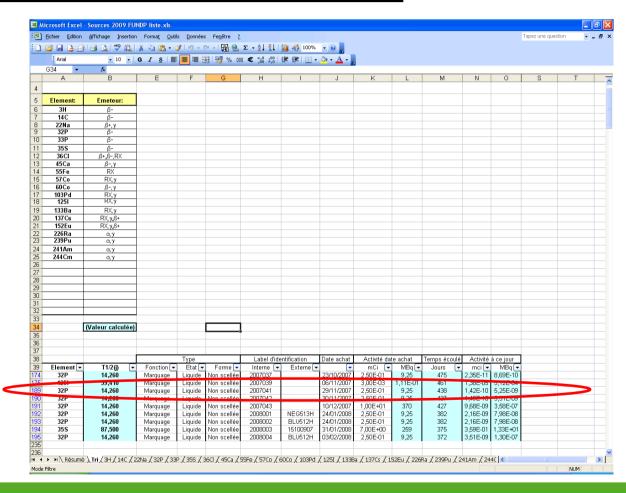
Procédure déchet

Gestion des déchets à l'UNamur

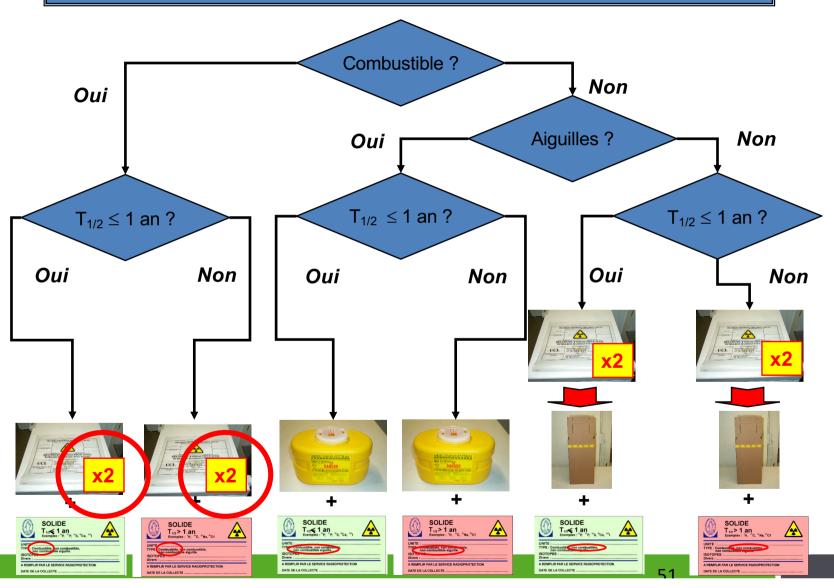
- 1) Stockage dans unités dans des <u>récipients appropriés</u>.
- 2) Enlèvement:

Par la cellule de radioprotection :

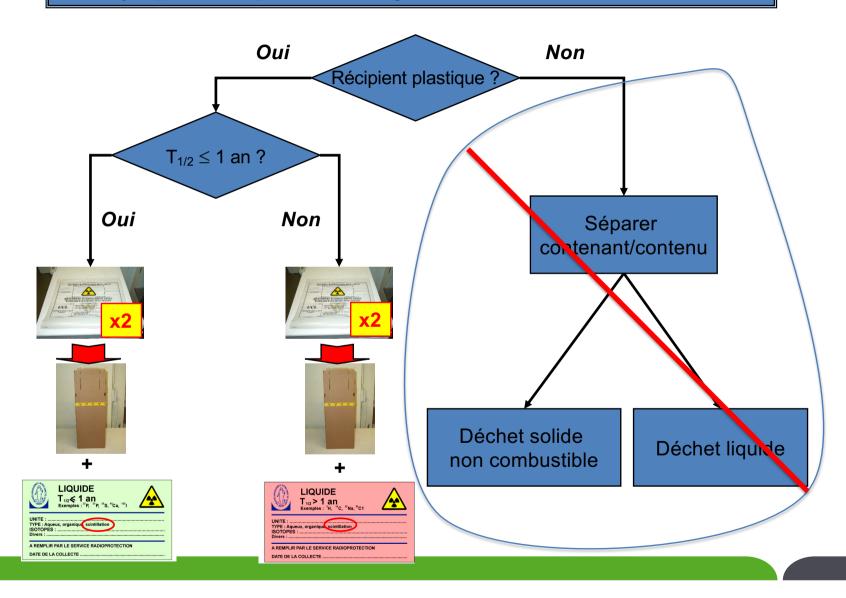
- lors du passage du responsable déchets adioactifs dans les différentes unités
- sur demande bureau (5349) ou GSM (0476/27.59.69)
- par mail <u>radioprotection@unamur.be</u>

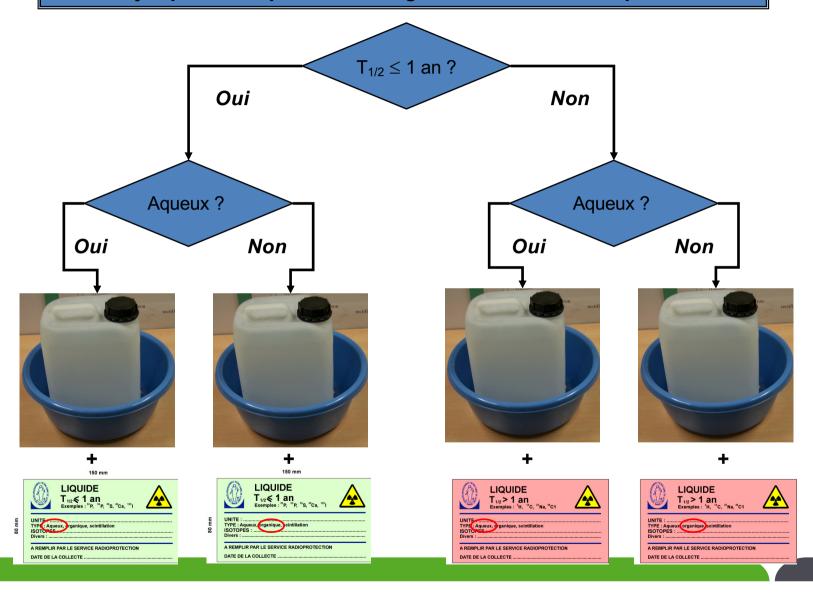

Si et Seulement Si:

- conditionnement et étiquetage appropriés
- 3) Local déchets
 - Dans des récipients fermés,
 - A l'épreuve du feu, fermé à clé et efficacement ventilé,
 - Inventaire permanent des déchets radioactifs.
- 4) Evacuation via transporteur vers LLN


L'UNamur évacue tous ses déchets

Procédure déchet


Gestion des déchets à l'UNamur


Synopsis de la procédure de gestion des déchets solides

Synopsis de la procédure de gestion des fioles de scintillation

Synopsis de la procédure de gestion des déchets liquides

L'état des procédures à l'UNamur

CIDE

Obligation pour tous
Consignes d'urgence pour

Bien-être pour tous Sécurité en laboratoire

Référenciel de laboratoire

La radioprotection

Organisation et documents relative à la Radioprotection

La biosécurité LES FORMATIONS OBLIGATOIRES

Biosafety

Contacts
CPPT
Liens utiles
Actualités

SIPPT

UNamur / Services institutionnels / SIPPT / Sécurité en laboratoire / La radioprotection

ORGANISATION ET DOCUMENTS RELATIVE À LA RADIOPROTECTION

SERVICE DE CONTRÔLE PHYSIQUE

Laurent Blot Responsable du Service de contrôle physique

Stéphane Lucas Expert agréé en contrôle physique

Responsable du LARN

Thierry Mayenne Technicien

GARDE D'URGENCE

Laurent Blot, Responsable du Service de contrôle physiqu

GSM +32 (474) 64 10 33, Tél. 2341

Stéphane Lucas, Expert agréé en contrôle physique

GSM +32 (498)97 52 82

DOCUMENTS

- Achat de substances radioactives
- Aménagement des locaux de classe II
- Aménagement des locaux de classe III
- Formation en radioprotection (pour débutants)
- Formation en radioprotection (rappels pour "seniors")
- Gestion de déchets dans les unités
- Manuel de radioprotection
- Nettoyage des "zones chaudes"
- Renseignements individuels

Cellule de Radioprotection

AFCN : Agence fédérale de contrôle nucléaire Ministère de l'intérieur Recteur: Exploitant Naji Habra **UNamur Rectorat** RPE: Radiation Protection Expert. Expert en radioprotection Be.Sure Monsieur Godechal D. RPO: Radiation Protection officer. Personne chargée de la radioprotection **UNamur SerP** Donnez Olivier. (Directeur du Service de Prévention) RPO: Radiation Protection officer. Personne chargée de la radioprotection **UNamur SerP** Mayenne Thierry. (Responsable de la Cellule de Radioprotection et de la Cellule des Déchets Dangereux) UNamur Unités de recherches Relais en radioprotection

Cellule de Radioprotection

- 1. **Procédures** en cours de rédaction :
- Demande et échange de dosimètres.
- Achat de sources sellées et non sellées.
 - Validation des bons de commande des substances radioactives.
- Registre d'utilisation des sources non sellées.
 - Mise à disposition d'un logbook.
- Déplacement de sources «in situ».
 - Utiliser un conteneur pour transport de matériel radioactif.
- Utilisation de la centrifugeuse URPhyM (Jadot).
 - Mode opératoire pour utiliser la centrifugeuse « radioactive ».
- Gestion des déchets radioactifs.
- 2. Déclassement provisoire d'une zone contrôlée (CeTi).
 - Valider cette proposition.
- 3. Déclassement de zone contrôlée local 405 URPhyM (Jadot).
 - Recommandation du RPE.
- 4. Remise en conformité de la zone contrôlée en URBM.
 - Obligation légale demande de RPE externe.