The Smaller (SALI) and the Generalized (GALI) Alignment Index Methods of Chaos Detection: Theory and Applications

Haris Skokos

Max Planck Institute for the Physics of Complex Systems Dresden, Germany

E-mail: hskokos@pks.mpg.de
URL: http://www.pks.mpg.de/~hskokos/

Outline

- Smaller ALignment Index - SALI
\checkmark Definition
\checkmark Behavior for chaotic and regular motion
\checkmark Applications
- Generalized ALignment Index - GALI
\checkmark Definition - Relation to SALI
\checkmark Behavior for chaotic and regular motion
\checkmark Applications
\checkmark Global dynamics
\checkmark Motion on low-dimensional tori
- Conclusions
H. Skokos

Definition of Smaller Alignment Index (SALI)

Consider the n-dimensional phase space of a conservative dynamical system (symplectic map or Hamiltonian flow).

An orbit in that space with initial condition :

$$
\mathbf{P}(0)=\left(x_{1}(0), x_{2}(0), \ldots, x_{n}(0)\right)
$$

and a deviation vector

$$
\mathbf{v}(0)=\left(\mathrm{dx}_{1}(0), \mathrm{dx}_{2}(0), \ldots, \mathrm{dx}_{\mathrm{n}}(0)\right)
$$

The evolution in time (in maps the time is discrete and is equal to the number \mathbf{N} of the iterations) of a deviation vector is defined by:
-the variational equations (for Hamiltonian flows) and -the equations of the tangent map (for mappings)

Definition of SALI

We follow the evolution in time of two different initial deviation vectors ($\mathbf{v}_{\mathbf{1}}(\mathbf{0}), \mathbf{v}_{\mathbf{2}}(\mathbf{0})$), and define SALI (Skokos, 2001, J. Phys. A, 34, 10029) as:

$$
\operatorname{SALI}(\mathbf{t})=\min \left\{\left\|\hat{\mathbf{v}}_{\mathbf{1}}(\mathbf{t})+\hat{\mathbf{v}}_{\mathbf{2}}(\mathbf{t})\right\|,\left\|\hat{\mathbf{v}}_{\mathbf{1}}(\mathbf{t})-\hat{\mathbf{v}}_{\mathbf{2}}(\mathbf{t})\right\|\right\}
$$

where

$$
\hat{\mathbf{v}}_{1}(t)=\frac{\mathbf{v}_{1}(t)}{\left\|\mathbf{v}_{1}(t)\right\|}
$$

When the two vectors become collinear

$$
\operatorname{SALI}(t) \rightarrow 0
$$

Behavior of SALI for chaotic motion

For chaotic orbits the two initially different deviation vectors tend to coincide with the direction defined

Behavior of SALI for chaotic motion

 2004, J. Phys. A, 37, 6269) for a chaotic orbit of the 3D Hamiltonian

$$
H=\sum_{i=1}^{3} \frac{\omega_{i}}{2}\left(q_{i}^{2}+p_{i}^{2}\right)+q_{1}^{2} q_{2}+q_{1}^{2} q_{3}
$$

with $\omega_{1}=1, \omega_{2}=1.4142, \omega_{3}=1.7321, H=0.09$

Behavior of SALI for regular motion

Regular motion occurs on a torus and two different initial deviation vectors become tangent to the torus, generally having different directions.

Applications - Hénon-Heiles system

For $E=1 / 8$ we consider the orbits with initial conditions:
Ordered orbit, $x=0, y=0.55, p_{x}=0.2417, p_{y}=0$
Chaotic orbit, $x=0, y=-0.016, p_{x}=0.49974, p_{y}=0$
Chaotic orbit, $x=0, y=-0.01344, p_{x}=0.49982, p_{y}=0$

Applications - Hénon-Heiles system

Applications - Hénon-Heiles system

$\log ($ SALI $) \leq-12$
$-12<\log ($ SALI $) \leq-8$
$-8<\log ($ SALI $) \leq-4$
$-4<\log ($ SALI $)$

Applications - 4D map

$$
\begin{aligned}
& \mathbf{x}_{1}^{\prime}=\mathbf{x}_{1}+x_{2} \\
& x_{2}^{\prime}=x_{2}-v \sin \left(x_{1}+x_{2}\right)-\mu\left[1-\cos \left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right] \\
& x_{3}^{\prime}=x_{3}+x_{4} \\
& x_{4}^{\prime}=x_{4}-\kappa \sin \left(x_{3}+x_{4}\right)-\mu\left[1-\cos \left(x_{1}+x_{2}+x_{3}+x_{4}\right)\right]
\end{aligned}
$$

ordered orbit C with initial conditions $x_{1}=0.5, x_{2}=0, x_{3}=0.5, x_{4}=0$.
chaotic orbit \boldsymbol{D} with initial conditions $x_{1}=3, x_{2}=0, x_{3}=0.5, x_{4}=0$.

H. Skokos

Applications - 4D Accelerator map

We consider the 4D symplectic map

$$
\left(\begin{array}{l}
\mathbf{x}_{1}^{\prime} \\
\mathbf{x}_{2}^{\prime} \\
\mathbf{x}_{3}^{\prime} \\
\mathbf{x}_{4}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \omega_{1} & -\sin \omega_{1} & 0 & 0 \\
\sin \omega_{1} & \cos \omega_{1} & 0 & 0 \\
0 & 0 & \cos \omega_{2} & -\sin \omega_{2} \\
0 & 0 & \sin \omega_{2} & \cos \omega_{2}
\end{array}\right) \times\left(\begin{array}{c}
\mathbf{x}_{1} \\
x_{2}+x_{1}^{2}-x_{3}^{2} \\
\mathbf{x}_{3} \\
x_{4}-2 x_{1} x_{3}
\end{array}\right)
$$

describing the instantaneous sextupole 'kicks' experienced by a particle as it passes through an accelerator (Turchetti \& Scandale 1991, Bountis \& Tompaidis 1991, Vrahatis et al. 1996, 1997).
x_{1} and x_{3} are the particle's deflections from the ideal circular orbit, in the horizontal and vertical directions respectively.
x_{2} and x_{4} are the associated momenta
ω_{1}, ω_{2} are related to the accelerator's tunes q_{x}, q_{y} by

$$
\omega_{1}=2 \pi q_{x}, \quad \omega_{2}=2 \pi q_{y}
$$

Our problem is to estimate the region of stability of the particle's motion, the so-called dynamic aperture of the beam (Bountis \& Skokos, 2006, Nucl. Inst Meth. Phys Res. A, 561, 173).

4D Accelerator map - "Global" study

Regions of different values of the SALI on the subspace $\mathbf{x}_{\mathbf{2}}(\mathbf{0})=\mathrm{x}_{\mathbf{4}}(\mathbf{0})=\mathbf{0}$, after 10^{4} iterations ($\mathbf{q}_{\mathrm{x}}=\mathbf{0 . 6 1 8 0 3} \mathrm{q}_{\mathrm{y}}=\mathbf{0 . 4 1 5 2}$)

H. Skokos Dynamical Systems Group Seminar

4D Accelerator map - "Global" study

We consider $1,922,833$ orbits by varying all $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}$

 within spherical shells of width 0.01 in a hypersphere of radius $1 .\left(\mathrm{q}_{\mathrm{x}}=\mathbf{0 . 6 1 8 0 3} \mathrm{q}_{\mathrm{y}}=\mathbf{0 . 4 1 5 2}\right)$

Applications - 2D map

$$
\begin{align*}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=x_{2}-v \sin \left(x_{1}+x_{2}\right)
\end{align*}
$$

For $v=0.5$ we consider the orbits:
ordered orbit \boldsymbol{A} with initial conditions $x_{1}=2, x_{2}=0$. chaotic orbit \boldsymbol{B} with initial conditions $x_{1}=3, x_{2}=0$.

Behavior of SALI

2D maps

$\underline{\text { SALI } \rightarrow 0 \text { both for regular and chaotic orbits }}$
following, however, completely different time rates which allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps $\underline{\text { SALI } \rightarrow \mathbf{0} \text { for chaotic orbits }}$

$\underline{\text { SALI } \rightarrow \text { constant } \neq 0 \text { for regular orbits }}$

Questions

Can we generalize SALI so that the new index:

- Can rapidly reveal the nature of chaotic orbits with $\sigma_{1} \approx \sigma_{2}\left(\right.$ SALI $\left.\propto \mathrm{e}^{-(t 1-\sigma 2) t}\right)$?
- Depends on several Lyapunov exponents for chaotic orbits?
- Exhibits power-law decay for regular orbits depending on the dimensionality of the tangent space of the reference orbit as for 2D maps?

Definition of Generalized Alignment Index (GALI)

SALI effectively measures the 'area' of the parallelogram formed by the two deviation vectors.

Definition of GALI

In the case of an \mathbf{N} degree of freedom Hamiltonian system or a 2 N symplectic map we follow the evolution of
k deviation vectors with $2 \leq k \leq 2 N$,
and define (Skokos et al., 2007, Physica D, 231, 30) the Generalized Alignment Index (GALI) of order k :

$$
\operatorname{GALI}_{k}(\mathbf{t})=\left\|\hat{\mathbf{v}}_{1}(\mathbf{t}) \wedge \hat{\mathbf{v}}_{2}(\mathbf{t}) \wedge \ldots \wedge \hat{\mathbf{v}}_{\mathrm{k}}(\mathrm{t})\right\|
$$

where

$$
\hat{\mathbf{v}}_{1}(t)=\frac{\mathbf{v}_{1}(t)}{\left\|\mathbf{v}_{1}(t)\right\|}
$$

Wedge product

We consider as a basis of the 2 N -dimensional tangent space of the Hamiltonian flow the usual set of orthonormal vectors:

$$
\hat{\mathbf{e}}_{1}=(1,0,0, \ldots, 0), \hat{\mathbf{e}}_{2}=(0,1,0, \ldots, 0), \ldots, \hat{\mathbf{e}}_{2 \mathrm{~N}}=(0,0,0, \ldots, 1)
$$

Then for k deviation vectors we have:

$$
\left[\begin{array}{c}
\hat{\mathbf{v}}_{1} \\
\hat{\mathbf{v}}_{2} \\
\vdots \\
\hat{\mathbf{v}}_{k}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{v}_{11} & \mathbf{v}_{12} & \cdots & \mathbf{v}_{12 \mathrm{~N}} \\
\mathbf{v}_{21} & \mathbf{v}_{22} & \cdots & \mathbf{v}_{22 \mathrm{~N}} \\
\vdots & \vdots & & \vdots \\
\mathbf{v}_{\mathbf{k} 1} & \mathbf{v}_{\mathbf{k} 2} & \cdots & \mathbf{v}_{\mathrm{k} 2 \mathrm{~N}}
\end{array}\right] \cdot\left[\begin{array}{c}
\hat{\mathbf{e}}_{1} \\
\hat{\mathbf{e}}_{2} \\
\vdots \\
\hat{\mathbf{e}}_{2 \mathrm{~N}}
\end{array}\right]
$$

$$
\hat{\mathbf{v}}_{1} \wedge \hat{\mathbf{v}}_{2} \wedge \cdots \wedge \hat{\mathbf{v}}_{\mathbf{k}}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq 2 N}\left|\begin{array}{cccc}
\mathbf{V}_{1 i_{1}} & \mathbf{V}_{1 i_{2}} & \cdots & \mathbf{v}_{1 i_{k}} \\
\mathbf{v}_{2 i_{1}} & \mathbf{V}_{2 i_{2}} & \cdots & \mathbf{V}_{2 i_{k}} \\
\vdots & \vdots & & \vdots \\
\mathbf{V}_{\mathbf{k} \mathbf{i}_{1}} & \mathbf{V}_{\mathbf{k} i_{2}} & \cdots & \mathbf{V}_{\mathbf{k} \mathbf{i}_{k}}
\end{array}\right| \hat{\mathbf{e}}_{\mathbf{i}_{1}} \wedge \hat{\mathbf{e}}_{\mathbf{i}_{2}} \wedge \cdots \wedge \hat{\mathbf{e}}_{\mathbf{i}_{k}}
$$

Computation of GALI

For k deviation vectors:

$$
\left[\begin{array}{c}
\hat{\mathbf{v}}_{1} \\
\hat{\mathbf{v}}_{2} \\
\vdots \\
\hat{\mathbf{v}}_{\mathbf{k}}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{v}_{11} & \mathbf{v}_{12} & \cdots & \mathbf{v}_{12 \mathrm{~N}} \\
\mathbf{v}_{21} & \mathbf{v}_{22} & \cdots & \mathbf{v}_{22 \mathrm{~N}} \\
\vdots & \vdots & & \vdots \\
\mathbf{v}_{\mathbf{k} 1} & \mathbf{v}_{\mathbf{k} 2} & \cdots & \mathbf{v}_{\mathbf{k} 2 \mathrm{~N}}
\end{array}\right] \cdot\left[\begin{array}{c}
\hat{\mathbf{e}}_{1} \\
\hat{\mathbf{e}}_{2} \\
\vdots \\
\hat{\mathbf{e}}_{2 \mathrm{~N}}
\end{array}\right]=\mathbf{A} \cdot\left[\begin{array}{c}
\hat{\mathbf{e}}_{1} \\
\hat{\mathbf{e}}_{2} \\
\vdots \\
\hat{\mathbf{e}}_{2 \mathrm{~N}}
\end{array}\right]
$$

the 'norm' of the wedge product is given by:

$$
\left\|\hat{\mathbf{v}}_{1} \wedge \hat{\mathbf{v}}_{2} \wedge \cdots \wedge \hat{\mathbf{v}}_{\mathbf{k}}\right\|=\left\{\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq 2 \mathbf{N}}\left|\begin{array}{cccc}
\mathbf{v}_{1 i_{1}} & \mathbf{v}_{1 i_{2}} & \cdots & \mathbf{v}_{1 \mathbf{i}_{k}} \\
\mathbf{v}_{2 \mathbf{i}_{1}} & \mathbf{v}_{2 \mathbf{i}_{2}} & \cdots & \mathbf{v}_{2 i_{k}} \\
\vdots & \vdots & & \vdots \\
\mathbf{v}_{\mathbf{k} \mathbf{i}_{1}} & \mathbf{v}_{\mathbf{k} \mathbf{i}_{2}} & \cdots & \mathbf{v}_{\mathbf{k} \mathbf{i}_{k}}
\end{array}\right|^{2}\right\}^{1 / 2}=\sqrt{\operatorname{det}\left(\mathbf{A} \cdot \mathbf{A}^{T}\right)}
$$

Computation of GALI

From Singular Value Decomposition (SVD) of A^{T} we get:

$$
\mathbf{A}^{\mathbf{T}}=\mathbf{U} \cdot \mathbf{W} \cdot \mathbf{V}^{\mathbf{T}}
$$

where U is a column-orthogonal $2 N \times k$ matrix ($U^{T} \cdot \mathbf{U}=I$), $\mathbf{V}^{\mathbf{T}}$ is a $\mathbf{k} \times k$ orthogonal matrix $\left(V \cdot V^{\mathrm{T}}=\mathrm{I}\right.$), and W is a diagonal $k \times \mathbf{k}$ matrix with positive or zero elements, the so-called singular values. So, we get:

$$
\begin{aligned}
& \operatorname{det}\left(\mathbf{A} \cdot \mathbf{A}^{\mathrm{T}}\right)=\operatorname{det}\left(\mathbf{V} \cdot \mathbf{W}^{\mathrm{T}} \cdot \mathbf{U}^{\mathrm{T}} \cdot \mathbf{U} \cdot \mathbf{W} \cdot \mathbf{V}^{\mathrm{T}}\right)=\operatorname{det}\left(\mathbf{V} \cdot \mathbf{W} \cdot \mathbf{I} \cdot \mathbf{W} \cdot \mathbf{V}^{\mathrm{T}}\right)= \\
& \operatorname{det}\left(\mathbf{V} \cdot \mathbf{W}^{2} \cdot \mathbf{V}^{\mathrm{T}}\right)=\operatorname{det}\left(\mathbf{V} \cdot \operatorname{diag}\left(\mathbf{w}_{1}^{2}, \mathbf{w}_{2}^{2}, \ldots \mathbf{w}_{\mathbf{k}}^{2}\right) \cdot \mathbf{V}^{\mathrm{T}}\right)=\prod_{i=1}^{k} \mathbf{w}_{i}^{2}
\end{aligned}
$$

Thus, GALI $_{k}$ is computed by:

$$
\operatorname{GALI}_{k}=\sqrt{\operatorname{det}\left(\mathbf{A} \cdot \mathbf{A}^{\mathrm{T}}\right)}=\prod_{\mathrm{i}=1}^{\mathrm{k}} \mathbf{w}_{\mathrm{i}} \Rightarrow \log \left(\mathrm{GALI}_{\mathrm{k}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{k}} \log \left(\mathbf{w}_{\mathrm{i}}\right)
$$

Behavior of $\mathbf{G A L I}_{k}$ for chaotic motion

GALI $_{k}(2 \leq k \leq 2 N)$ tends exponentially to zero with exponents that involve the values of the first k largest Lyapunov exponents $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$:

$$
\mathbf{G A L I}_{k}(\mathbf{t}) \propto \mathbf{e}^{-\left[\left(\sigma_{1}-\sigma_{2}\right)+\left(\sigma_{1}-\sigma_{3}\right)+\ldots+\left(\sigma_{1}-\sigma_{\mathrm{k}}\right)\right] \mathbf{t}}
$$

The above relation is valid even if some Lyapunov exponents are equal, or very close to each other.

Behavior of $\mathbf{G A L I}_{k}$ for chaotic motion

2D Hamiltonian (Hénon-Heiles system)

H. Skokos

Behavior of $\mathbf{G A L I}_{k}$ for chaotic motion

3D system:

$$
\mathbf{H}_{3}=\sum_{\mathrm{i}=1}^{3} \frac{\boldsymbol{\omega}_{\mathrm{i}}}{\mathbf{2}}\left(\mathbf{q}_{\mathrm{i}}^{2}+\mathbf{p}_{\mathrm{i}}^{2}\right)+\mathbf{q}_{1}^{2} \mathbf{q}_{2}+\mathbf{q}_{1}^{2} \mathbf{q}_{3}
$$

with $\omega_{1}=1, \omega_{2}=\sqrt{2}, \omega_{3}=\sqrt{3}, H_{3}=0.09$.

H. Skokos

Dynamical Systems Group Seminar

Behavior of $\mathbf{G A L I}_{k}$ for chaotic motion

N particles Fermi-Pasta-Ulam (FPU) system:

$$
H=\frac{1}{2} \sum_{i=1}^{N} p_{i}^{2}+\sum_{i=0}^{N}\left[\frac{1}{2}\left(q_{i+1}-q_{i}\right)^{2}+\frac{\beta}{4}\left(q_{i+1}-q_{i}\right)^{4}\right]
$$

with fixed boundary conditions, $\mathrm{N}=8$ and $\boldsymbol{\beta}=\mathbf{1 . 5}$.

Behavior of $\mathbf{G A L I}_{k}$ for regular motion

If the motion occurs on an s-dimensional torus with $s \leq N$ then the behavior of $\mathbf{G A L I}_{k}$ is given by (Skokos et al., 2008, EPJ-ST, 165, 5):

$$
\mathbf{G A L I}_{k}(t) \propto\left\{\begin{array}{lll}
\text { constant } & \text { if } & 2 \leq k \leq s \\
\frac{1}{\mathbf{t}^{k-s}} & \text { if } & s<k \leq \mathbf{2 N}-\mathbf{s} \\
\frac{\mathbf{1}}{\mathbf{t}^{2(k-N)}} & \text { if } & \mathbf{2 N}-\mathbf{s}<\mathbf{k} \leq \mathbf{2 N}
\end{array}\right.
$$

while in the common case with $\mathrm{s}=\mathrm{N}$ we have :

$$
\operatorname{GALI}_{k}(t) \propto\left\{\begin{array}{lll}
\text { constant } & \text { if } & 2 \leq k \leq N \\
\frac{\mathbf{1}}{\mathbf{t}^{2(k-N)}} & \text { if } & \mathbf{N}<k \leq \mathbf{2 N}
\end{array}\right.
$$

Behavior of $\mathbf{G A L I}_{k}$ for regular motion

3D Hamiltonian

H. Skokos

Behavior of $\mathbf{G A L I}_{k}$ for regular motion

$\mathrm{N}=8 \mathrm{FPU}$ system: The unperturbed Hamiltonian $(\beta=0)$ is written as a sum of the so-called harmonic energies E_{i} :

$$
E_{i}=\frac{1}{2}\left(P_{i}^{2}+\omega_{i}^{2} Q_{i}^{2}\right), i=1, \ldots, N
$$

with:

$$
Q_{i}=\sqrt{\frac{2}{N+1}} \sum_{i=1}^{N} q_{i} \sin \left(\frac{k i \pi}{N+1}\right), P_{i}=\sqrt{\frac{2}{N+1}} \sum_{i=1}^{N} p_{i} \sin \left(\frac{k i \pi}{N+1}\right), \omega_{i}=2 \sin \left(\frac{i \pi}{2(N+1)}\right)
$$

Dynamical Systems Group Seminar
Namur, Belgium, 2 February 2010

Global dynamics

- GALI $_{2}$ (practically equivalent to the use of SALI)
- GALI $_{\mathbf{N}}$

Chaotic motion: GALI $_{\mathrm{N}} \rightarrow 0$ (exponential decay)
Regular motion:
GALI $_{\mathrm{N}} \rightarrow$ constant $\boldsymbol{\neq 0}$

3D Hamiltonian
Subspace $\mathbf{q}_{3}=p_{3}=\mathbf{0}, p_{2} \geq 0$ for $\mathbf{t}=\mathbf{1 0 0 0}$.

H. Skokos

Dynamical Systems Group Seminar
30
Namur, Belgium, 2 February 2010

Global dynamics

GALI $_{k}$ with $k>N$
The index tends to zero both for regular and chaotic orbits but with completely different time rates: Chaotic motion: exponential decay Regular motion: power law

2D Hamiltonian (Hénon-Heiles)
Time needed for GALI $_{4}<10^{-12}$

H. Skokos

Regular motion on low-dimensional tori

A regular orbit lying on a 2-dimensional torus for the $\mathbf{N}=\mathbf{8}$ FPU system.

Regular motion on low-dimensional tori

A regular orbit lying on a 4-dimensional torus for the $\mathrm{N}=8$ FPU system.

Low-dimensional tori - 6D map

$$
\begin{aligned}
& \mathrm{x}_{1}^{\prime}=\mathrm{x}_{1}+\mathrm{x}_{2}^{\prime} \\
& x_{2}^{\prime}=x_{2}+\frac{K_{1}}{2 \pi} \sin \left(2 \pi x_{1}\right)-\frac{B}{2 \pi}\left\{\sin \left[2 \pi\left(x_{5}-x_{1}\right)\right]+\sin \left[2 \pi\left(x_{3}-x_{1}\right)\right]\right\} \\
& \mathrm{x}_{3}^{\prime}=\mathrm{x}_{3}+\mathrm{x}_{4}^{\prime} \\
& \mathrm{x}_{4}^{\prime}=\mathrm{x}_{4}+\frac{\mathrm{K}_{2}}{2 \pi} \sin \left(2 \pi \mathrm{x}_{3}\right)-\frac{\mathrm{B}}{2 \pi}\left\{\sin \left[2 \pi\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)\right]+\sin \left[2 \pi\left(\mathrm{x}_{5}-\mathrm{x}_{3}\right)\right]\right\}(\bmod 1) \\
& \mathrm{x}_{5}^{\prime}=\mathrm{x}_{5}+\mathrm{x}_{6}^{\prime} \\
& x_{6}^{\prime}=x_{6}+\frac{K_{3}}{2 \pi} \sin \left(2 \pi x_{5}\right)-\frac{B}{2 \pi}\left\{\sin \left[2 \pi\left(x_{3}-x_{5}\right)\right]+\sin \left[2 \pi\left(x_{1}-x_{5}\right)\right]\right\}
\end{aligned}
$$

3D torus

2D torus

H. Skokos Dynamical Systems Group Seminar

Behavior of GALI ${ }_{k}$

Chaotic motion:

GALI $_{\mathrm{k}} \rightarrow \mathbf{0}$ exponential decay
$\operatorname{GALI}_{k}(\mathbf{t}) \propto \mathbf{e}^{-\left[\left(\sigma_{1}-\sigma_{2}\right)+\left(\sigma_{1}-\sigma_{3}\right)+\ldots+\left(\sigma_{1}-\sigma_{\mathrm{k}}\right)\right] t}$

Regular motion:

GALI $_{k} \rightarrow$ constant $\neq 0$ or $\mathbf{G A L I}_{k} \rightarrow \mathbf{0}$ power law decay

$$
\mathbf{G A L}_{\mathbf{k}}(\mathbf{t}) \propto\left\{\begin{array}{lll}
\text { constant } & \text { if } & \mathbf{2} \leq \mathbf{k} \leq \mathbf{s} \\
\frac{1}{\mathbf{t}^{\mathbf{k}-s}} & \text { if } & \mathbf{s}<\mathbf{k} \leq \mathbf{2 N}-\mathbf{s} \\
\frac{\mathbf{1}}{\mathbf{t}^{2(k-N)}} & \text { if } & \mathbf{2 N}-\mathbf{s}<\mathbf{k} \leq \mathbf{2 N}
\end{array}\right.
$$

Conclusions

- Generalizing the SALI method we define the Generalized ALignment Index of order $k\left(\right.$ GALI $\left._{k}\right)$ as the volume of the generalized parallelepiped, whose edges are k unit deviation vectors. GALI $_{k}$ is computed as the product of the singular values of a matrix (SVD algorithm).
- Behaviour of GALI \mathbf{k}_{k} :
\checkmark Chaotic motion: it tends exponentially to zero with exponents that involve the values of several Lyapunov exponents.
\checkmark Reguler motion: it fluctuates around non-zero values for $2 \leq k \leq s$ and goes to zero for $s<k \leq 2 N$ following power-laws, with s being the dimensionality of the torus.
- GALI $_{k}$ indices :
\checkmark can distinguish rapidly and with certainty between regular and chaotic motion
\checkmark can be used to characterize individual orbits as well as "chart" chaotic and regular domains in phase space.
\checkmark are perfectly suited for studying the global dynamics of multidimentonal systems
\checkmark can identify regular motion in low-dimensional tori
H. Skokos

References

- SALI
\checkmark Skokos Ch. (2001) J. Phys. A, 34, 10029
\checkmark Skokos Ch., Antonopoulos Ch., Bountis T. C. \& Vrahatis M. N. (2003) Prog. Theor. Phys. Supp., 150, 439
\checkmark Skokos Ch., Antonopoulos Ch., Bountis T. C. \& Vrahatis M. N. (2004) J. Phys. A, 37, 6269
- GALI
\checkmark Skokos Ch., Bountis T. C. \& Antonopoulos Ch. (2007) Physica D, 231, 30-54
\checkmark Skokos Ch., Bountis T. C. \& Antonopoulos Ch. (2008) Eur. Phys. J. Sp. Top., 165, 5-14

