Audrey Compère

Département de mathématique FUNDP Namur

Séminaire de Systèmes Dynamiques 14 octobre 2009

Table des matières

- Introduction
- 2 Les satellites d'astéroïdes
 - Système Ida-Dactyl
 - Travail de J-M Petit sur Ida-Dactyl (1997)
- Simulations numériques
 - Bases
 - Calcul du potentiel
 - Indicateur de chaos : le MEGNO
 - Tests sur Ida-Dactyl
- Cartes de chaos
 - Résonance gravitationnelle ?
 - Analyse en fréquence
 - Résonance entre d'autres angles ?
 - Développement analytique
 - Validation du code

Introduction

Astéroïde binaire : système de deux astéroïdes tournant l'un autour de l'autre.

Formes possibles:

1 Les deux corps ont plus ou moins la même taille : astéroïde double Ex: antiope

2 Un corps est vraiment plus petit que l'autre : astéroïde et son satellite Ex: Ida-Dactyl

Cas étudié : les satellites d'astéroïdes

Modèle:

Introduction

→ corps primaire : de forme quelconque

 \rightarrow satellite : petit et distant du primaire \Rightarrow masse ponctuelle

Remarque : le même modèle peut être utilisé pour le mouvement d'une sonde autour d'un astéroïde irrégulier

Système Ida-Dactyl

- Ida → astéroïde de la ceinture principale (famille Koronis)
 - → forme très irrégulière et spin rapide

	lda	Dactyl				
Masse	$(4.2 \pm 0.6) \times 10^{16} \text{ kg}$	\sim 4.10 12 kg				
Diamètres	59800 × 25400 × 18600 m	1600 × 1400 × 1200 m				

Demi-grand axe de Dactyl : \sim 108 km

Dactyl:

Orbit data :

Other data :

Mean radius : 0.7 km

 $\begin{array}{lll} \mbox{Principal diameters} & : & 1.6 \times 1.4 \times 1.2 \mbox{ km} \\ \mbox{Shape} & : & \mbox{less irregular then Ida} \\ \mbox{Ellisoidal fit (radii)} & : & 0.8 \times 0.7 \times 0.6 \mbox{ km} \\ \end{array}$

Masse : $\sim 4.10^{12}$ kg Surface area : $6.3 \text{ } km^2$ Volume : $1.4 \text{ } km^3$

Spin period : > 8 hr ? (slow and may be synchronous)

⇒ II reste beaucoup d'inconnues !!

Travail de J-M Petit sur Ida-Dactyl (1997)

Contexte:

0.00420

- La masse d'Ida n'est pas déterminée avec précision.
- Pour chaque masse, il y a une orbite képlérienne de Dactyl correspondant aux observations

Rem : L'influence du Soleil et de Jupiter sur le système est négligeable donc négligé.

Belton, 1996

	GM ²	Density ³	a ⁴	e	i	Ω	60	f	W+f	Period	R, ⁶	WRMS'
	(km ³ .sec ⁻²)	(g.cm ⁻⁵)	(km)		(deg)	(deg)	(deg)	(deg)	(deg)	(hrs)	(km)	(pixels)
e	0.00100	1.68	39.0	2.77	170.47	-31.26	-27.67	42.04	14.38	-	69 1	0.200
yperboliques	0.00190	1.77	50.1	2.33	170.57	-31.54	-26.69	40.81	14 12		70.7	0.181
∺	0.00200	1.86	78.5	1.92	170.00	31.82	-25.40	39.32	13.83	-	72.5	0.167
Ð	0.00210	1.96	132.8	1.56	170.02	-32.10	-24.00	27.60	13.54	-	74.4	0.164
å	0.00220	2.05	SS-4.1	1.25	170.97	-32.34	-22.42	35.70	13.20		76.3	0.168
Ŧ	-0.000000	2.10	650.9	1.12	171.04	-32.44	-21.54	34.71	13.17	-	77.2	0.170
_	0.00230	2.14	7912.0	0.99	171.12	-32.54	-20.51	33.56	13.06	25612.0	78.1	0.174
	0.00235	2.19	667.0	0.88	171.19	-32.63	-19.50	32.47	12.97	620.2	79.0	0.177
	0.00240	2.24	355.4	0.78	171.27	-32.71	-18.29	31.16	12.87	238.7	79.8	0.180
	0.00250	2.33	200.8	0.59	171.41	-32.85	-15.52	28.23	12.71	99.3	81.4	0.185
	0.00260	2.42	148.8	0.44	171.56	-32.97	-11.87	24.46	12.58	62.2	82.9	0.190
	0.00280	2.61	107.7	0.21	171.84	-33.13	2.54	9.85	12.39	36.9	85.0	0.197
	0.00290	2.70	97.6	0.13	171.97	-33.19	21.41	-9.09	12.32	31.3	85.1	0.199
	0.00300	2.79	90.5	0.09	172.10	-33.24	63.56	-51.30	12.27	27.5	82.7	0.200
	0.00310	2.89	85.4	0.11	172.23	-33.28	107.67	-95.44	12.23	24.7	76.1	0.201
	0.00320	2.98	81.4	0.16	172.36	-33.30	127.84	-115.64	12.20	22.7	68.6	0.201
	0.00340	3.17	76.0	0.26	172.61	-33.33	142.68	-130.50	12.17	19.8	56.2	0.201
	0.00360	3.35	72.4	0.35	172.85	-33.32	148.77	-136.59	12.18	17.9	47.2	0.199
	0.00380	3.54	70.1	0.42	173.09	-33.28	152.36	-140.14	12.22	16.6	40.5	0.197

-33.12

156.87

-144.49

173.57

67.4

Premier modèle

Ida est approximé par un ellipsoïde.

Potentiel gravitationnel : intégrales elliptiques

Intégrateur : Bulirsch and Stoer avec une précision de 10^{-10}

Simulations numériques

Résultats :

Les orbites pour $M > 4.93 \times 10^{16}$ kg (q < 63 km) sont très instables.

→ crash ou échappée après quelques heures ou quelques jours!

Les autres orbites sont stables sur plusieurs centaines d'années.

Deuxième modèle

Approximation d'Ida par une collection de 44 sphères de tailles différentes.

⇒ borne plus précise.

Simulations numériques

Ma recherche : conditions de stabilité d'un satellite d'astéroïde

Modèle : Une masse ponctuelle tournant autour d'un ellipsoïde

Variation de paramètres :

- forme du primaire
- masse du primaire
- rotation du primaire
- orbite initiale du satellite
 - \Rightarrow système stable ?
 - ⇒ résonances ?

Mise en oeuvre : cartes de chaos

Code utilisé : programme Nimastep de Nicolas Delsate

Prévu pour : intégration numérique du mouvement d'un satellite artificiel autour d'une planète tellurique

→ pas prévu pour le cas d'un satellite d'astéroïde MAIS cas proche !

Différences:

- la forme irrégulière du corps primaire
- la rotation rapide du corps primaire
- l'excentricité souvent grande de l'orbite du satellite
- l'ordre d'importance des forces :

⇒ Forces pertinentes : la gravité et les forces dues à la forme du primaire

- 1. Premiers tests: article de A. Rossi (1999)
 - → Article qui teste des façons de calculer le potentiel d'un corps irrégulier.

Variation du noeud ascendant sur des ellipsoïdes axisymétriques (en $rad\ s^{-1}$):

Simulations numériques

000000000000000

	théorie des pertubations	méthode polygones	méthode mascon	harmo sphériques
ellipsoïde avec une orbite circulaire inclinée	-7.7 10 ⁻⁶	-1.09 10 ⁻⁵	-1.11 10 ⁻⁵	-1.07 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée	-8.37 10 ⁻⁶	-1.25 10 ⁻⁵	-1.33 10 ⁻⁵	-1.27 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée et distante	-7.10 10 ⁻⁷	-7.76 10 ⁻⁷	-7.92 10 ⁻⁷	-7.85 10 ⁻⁷

⇒ résultats convaincants

Calcul du potentiel

Adaptation à faire : calcul du potentiel dù à la forme de l'astéroïde

Usuellement : utilisation des harmoniques sphériques

= déformations d'une sphère

$$V(r,\theta,\lambda) = \frac{GM}{r} \left[1 + \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R_{\rm e}}{r} \right)^{n} P_{nm}(\sin\theta) \left(C_{nm} \cos m\lambda + S_{nm} \sin m\lambda \right) \right],$$

- (r, θ, λ) sont les coordonnées sphérique d'un point à l'extérieur de la sphère
- R_e est le rayon de la sphère
- P_{nm} sont les polynômes de Legendre
- C_{nm} et S_{nm} sont les coefficients du potentiel.

= déformations d'un ellipsoïde

$$V(\lambda_1,\lambda_2,\lambda_3) = GM \sum_{n=0}^{+\infty} \sum_{p=1}^{2n+1} \alpha_n^p \frac{F_n^p(\lambda_1)}{F_n^p(a)} E_n^p(\lambda_2) E_n^p(\lambda_3),$$

- $(\lambda_1, \lambda_2, \lambda_3)$ sont les coordonnées ellipsoïdales d'un point à l'extérieur de la sphère
- a est le demi-grand axe de l'ellipsoïde de référence
- E_n^p et F_n^p sont respectivement les fonctions du premier et du deuxième ordre de Lamé
- α_n^p est un coefficient équivalent aux C_{nm} et S_{nm} du cas sphérique

$$V(x_1, x_2, x_3) = \frac{3}{2}GM \int_{\lambda_1}^{+\infty} \left(1 - \frac{x_1^2}{s^2} - \frac{x_2^2}{s^2 - h^2} - \frac{x_3^2}{s^2 - k^2}\right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$

- $h^2=a^2-b^2$ et $k^2=a^2-c^2$ (a, b et c sont les demi-grands axes de l'ellipsoïde avec $a\geq b\geq c$)
- (x₁, x₂, x₃) sont les coordonnées cartésiennes du point où on veut calculer le potentiel
- λ_1 est la première coordonnée ellipsoïdale de ce point.

Les coordonnées ellipsoïdales :

Ellipsoïde de référence (le plus petit ellipsoïde contenant le corps et centré au même centre de masse) :

$$\Gamma_0 := \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 avec $a \ge b \ge c$

Longueurs focales :

$$h^2 = a^2 - b^2$$

$$k^2 = a^2 - c^2$$

$$\Rightarrow h^2 \le k^2$$

Alors
$$\Gamma_0 := \frac{x^2}{a^2} + \frac{y^2}{a^2 - h^2} + \frac{z^2}{a^2 - k^2} = 1.$$

A un point (x, y, z) on peut associer l'équation $\frac{x^2}{s^2} + \frac{y^2}{s^2 - h^2} + \frac{z^2}{s^2 - k^2} = 1$ où s est inconnue.

Cette équation correspond à

• un ellipsoïde si $k^2 \le s^2$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$$

• un hyperboloïde à une nappe si $h^2 \le s^2 \le k^2$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 1$$

• un hyperboloïde à deux nappes si $s^2 \le h^2$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = -1$$

Pour chaque (x, y, z) on a

$$\frac{x^2}{s^2} + \frac{y^2}{s^2 - h^2} + \frac{z^2}{s^2 - k^2} = 1 \qquad \Rightarrow \text{ équation d'ordre 3 en } s^2$$

Racines: λ_1^2 , λ_2^2 et λ_3^2 et on a $0 \le \lambda_3^2 \le h^2 \le \lambda_2^2 \le k^2 \le \lambda_1^2$.

Donc (x, y, z) est à l'intersection entre

- un ellipsoïde de demi-axes $(\sqrt{\lambda_1^2}, \sqrt{\lambda_1^2 h^2}, \sqrt{\lambda_1^2 k^2})$
- ullet un hyperboloïde à 1 nappe de demi-axes $(\sqrt{\lambda_2^2},\sqrt{\lambda_2^2-h^2},\sqrt{k^2-\lambda_2^2})$
- ullet un hyperboloïde à 2 nappes de demi-axes $(\sqrt{\lambda_3^2},\sqrt{h^2-\lambda_3^2})$

Coord cart
$$\rightarrow$$
 Coord ellips $(x, y, z) \rightarrow (\lambda_1^2, \lambda_2^2, \lambda_3^2)$

Cas particuliers :

(x, y, z) est sur Γ_0 : alors l'ellipsoïde associé à (x,y,z) est Γ_0 :

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - h^2} + \frac{z^2}{a^2 - k^2} = 1$$

 \Rightarrow (x, y, z) est à l'intersection de Γ_0 et de 2 hyperboloïdes.

② Γ_0 est une sphère $\Rightarrow a = b = c \Rightarrow k = h = 0$ Alors, l'équation associée à (x, y, z) est l'équation d'un cercle :

$$x^2 + y^2 + z^2 = s^2$$

C'est un cas dégénéré où les hyperboloïdes ne sont pas définis (λ_2^2 et λ_3^2 n'existent pas).

3 a = b ou $b = c \Rightarrow$ un des deux hyperboloïdes n'est pas défini.

MAIS λ_1^2 est toujours définie.

- $oldsymbol{0}$ calcul de valeurs approchées des λ_i^2 par des formules analytiques,
 - → formules numériquement instables
- ② on en déduit la plus petite valeur entre λ_i^2 , $|\lambda_i^2 h^2|$ et $|\lambda_i^2 k^2|$,
- on transforme l'équation cubique pour que la quantité précédente soit la nouvelle racine,
 - → pour éviter les petits diviseurs
- **4** on résoud la nouvelle équation par la méthode des sécantes et on calcule λ_i^2 , $|\lambda_i^2 h^2|$ et $|\lambda_i^2 k^2|$.
- ⇒ Bonnes approximations!

$$V(x_1, x_2, x_3) = \frac{3}{2}GM \int_{\lambda_1}^{+\infty} \left(1 - \frac{x_1^2}{s^2} - \frac{x_2^2}{s^2 - h^2} - \frac{x_3^2}{s^2 - k^2}\right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$
$$= \frac{3}{2}GM \int_{\lambda_1}^{+\infty} f(s, x_1, x_2, x_3) ds$$

- ullet a, b et c $(a \geq b \geq c)$ sont les demi-grands axes de l'ellipsoïde
- (x₁, x₂, x₃) sont les coordonnées cartésiennes du point où on veut calculer le potentiel
- λ_1 est la première coordonnée ellipsoïdale de ce point.

$$V(x_1, x_2, x_3) = \frac{3}{2}GM \int_{\lambda_1}^{+\infty} f(s, x_1, x_2, x_3) ds$$

$$F_{x_i} = \frac{\partial V}{\partial x_i} = \frac{\partial V}{\partial x_i} (x_1, x_2, x_3, \lambda_1 = cste) + \frac{\partial V}{\partial \lambda_1} \frac{\partial \lambda_1}{\partial x_i}$$

$$= \frac{3}{2}GM \int_{\lambda_1}^{+\infty} \frac{\partial f}{\partial x_i} (s, x_1, x_2, x_3) ds - \frac{3}{2}GM f(\lambda_1, x_1, x_2, x_3) \frac{\partial \lambda_1}{\partial x_i}$$

$$= \frac{3}{2}GM \int_{\lambda_1}^{+\infty} \frac{\partial f}{\partial x_i} (s, x_1, x_2, x_3) ds - 0$$

Donc,
$$F_{x_1} = \frac{\partial V}{\partial x_1} = \frac{\partial V}{\partial V}$$

$$F_{x_1} = \frac{\partial V}{\partial x_1} = -3x_1 GM \int_{\lambda_1}^{+\infty} \frac{ds}{s^2 (s^2 - h^2)^{1/2} (s^2 - k^2)^{1/2}}$$

$$F_{x_2} = \frac{\partial V}{\partial x_2} = -3x_2 GM \int_{\lambda_1}^{+\infty} \frac{ds}{(s^2 - h^2)^{3/2} (s^2 - k^2)^{1/2}}$$

$$F_{x_3} = \frac{\partial V}{\partial x_3} = -3x_3 GM \int_{\lambda_1}^{+\infty} \frac{ds}{(s^2 - h^2)^{1/2} (s^2 - k^2)^{3/2}}$$

Calcul des intégrales : quadrature de Gauss-Legendre après changements de variables (car fonctions strictement monotones)

Introduction

Variation du noeud ascendant sur des ellipsoïdes axisymétriques (en $rad\ s^{-1}$) :

Simulations numériques

0000000000000000

	pertubations	polygones	mascon	harmo. Sphér.	intégrale
ellipsoïde avec une orbite circulaire inclinée	-7.7 10 ⁻⁶	-1.09 10 ⁻⁵	-1.11 10 ⁻⁵	-1.07 10 ⁻⁵	-1.11 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée	-8.37 10 ⁻⁶	-1.25 10 ⁻⁵	-1.33 10 ⁻⁵	-1.27 10 ⁻⁵	-1.33 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée et distante	-7.10 10 ⁻⁷	-7.76 10 ⁻⁷	-7.92 10 ⁻⁷	-7.85 10 ⁻⁷	-7.86 10 ⁻⁷

⇒ résultats convaincants

MEGNO = Mean Exponential Growth factor of Nearby Orbits (Cincotta et Simó, 2000)

Soit:

- Le flot d'un système dynamique à n dim : $\frac{d}{dt}x(t) = f(x(t)), x \in \mathbb{R}^{2n}$.
- $\phi(t)$ l'orbite au temps t
- $\delta_{\phi}(t)$ un vecteur tangent le long de cette orbite avec $\dot{\delta_{\phi}} = \frac{\partial f}{\partial x}(\phi(t))\delta_{\phi}(t)$.

Alors, le MEGNO est

$$Y_{\phi}(t) = rac{2}{t} \int_{0}^{t} rac{\dot{\delta}_{\phi} \cdot \delta_{\phi}}{\delta_{\phi} \cdot \delta_{\phi}} \, s \, ds$$

= caractérisation du taux de divergence entre deux orbites proches.

Orbite périodique : $\overline{Y_\phi} \to 0$ Orbite quasi-périodique : $\overline{Y_\phi} \to 2$

Orbite chaotique : $\overline{Y_{\phi}}$ augmente linéairement avec le temps

grandes):

Tests sur certaines orbites possibles de Dactyl (avec des excentricités pas trop

GM ²	Density ³	a ⁴	e	i	Ω	60	f°	w+f	Period	R, ⁶	WRMS7
(km ³ .sec ⁻²)	(g.cm ⁻³)	(km)		(deg)	(deg)	(deg)	(deg)	(deg)	(hrs)	(km)	(pixels)
0.00180	1.68	39.0	2.77	170.47	-31.26	-27.67	42.04	14.38	-	69.1	0.209
0.00190	1.77	53.1	2.33	170.57	-31.54	-26.69	40.81	14.12	-	70.7	0.181
0.00200	1.86	78.5	1.92	170.68	-31.82	-25.49	39.32	13.83	-	72.5	0.167
0.00210	1.96	132.8	1.56	170.82	-32.10	-24.06	37.60	13.54	-	74.4	0.164
0.00220	2.05	304.1	1.25	170.97	-32.34	-22.42	35.70	13.28	-	76.3	0.168
0.00225	2.10	650.9	1.12	171.04	-32.44	-21.54	34.71	13.17	-	77.2	0.170
0.00230	2.14	7912.0	0.99	171.12	-32.54	-20.51	33.56	13.06	25612.0	78.1	0.174
0.00235	2.19	667.0	0.88	171.19	-32.63	-19.50	32.47	12.97	620.2	79.0	0.177
0.00240	2.24	355.4	0.78	171.27	-32.71	-18.29	31.16	12.87	238.7	79.8	0.180
0.00250	2.33	200.8	0.59	171.41	-32.85	-15.52	28.23	12.71	99.3	81.4	0.185
0.00260	2.42	148.8	0.44	171.56	-32.97	-11.87	24.46	12.58	62.2	82.9	0.190
0.00280	2.61	107.7	0.21	171.84	-33.13	2.54	9.85	12.39	36.9	85.0	0.197
0.00290	2.70	97.6	0.13	171.97	-33.19	21.41	-9.09	12.32	31.3	85.1	0.199
0.00300	2.79	90.5	0.09	172.10	-33.24	63.56	-51.30	12.27	27.5	82.7	0.200
0.00310	2.89	85.4	0.11	172.23	-33.28	107.67	-95.44	12.23	24.7	76.1	0.201
0.00320	2.98	81.4	0.16	172.36	-33.30	127.84	-115.64	12.20	22.7	68.6	0.201
0.00340	3.17	76.0	0.26	172.61	-33.33	142.68	-130.50	12.17	19.8	56.2	0.201
0.00360	3.35	72.4	0.35	172.85	-33.32	148.77	-136.59	12.18	17.9	47.2	0.199
0.00380	3.54	70.1	0.42	173.09	-33.28	152.36	-140.14	12.22	16.6	40.5	0.197
0.00420	3.91	67.4	0.54	173.57	-33.12	156.87	-144.49	12.38	14.9	31.1	0.192

Resultats:

- Crash ou échappée des orbites pour $M \gtrsim 5 \times 10^{16} \text{ kg}$
- Orbites régulières pour $M \lesssim 5 \times 10^{16} \text{ kg}$

Cartes de chaos

De façon plus générique : Quels systèmes sont stables/chaotiques ? Y a-t-il des zones de résonances ?

Simulations numériques

On fixe:

- la masse et la rotation de l'astéroïde (l'ellipsoïde)
- l'orbite initiale du satellite (Valeurs proches du cas Ida-Dactyl)
- a, le plus grand demi-axe de l'ellipsoïde

On fait varier la forme du primaire (les demi-axes b et c).

Intégrateur utilisé : Runge-Kutta-Fehlberg à pas variables

Précision : 10^{-12}

M=3.895551 10^6 kg, orbite initiale adaptée (notamment $i\simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

M=3.745722 10^6 kg, orbite initiale adaptée (notamment $i\simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

Introduction

M=5.693498 10⁶ kg, orbite initiale adaptée (notamment $i \simeq 2.99$) et vitesse de rotation = 3.76687 \times 10⁻⁴ rad/s

Mais dans ces graphiques, la masse est constante.

 \rightarrow toutes les configurations ne sont pas possibles...

Introduction

Si on fixe la densité de masse et pas la masse :

M=3.89555110⁶ kg, orbite initiale adaptée (notamment $i\simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

Évolution selon le temps :

Après 0,1 an:

Après 5 ans :

Après 1 an :

Après 10 ans :

Évolution selon la vitesse de rotation :

$$v = -2.5 \ 10^{-4} \ \text{rad/s}$$

$$v = -4.0 \ 10^{-4} \ rad/s$$

$$v = -3.76687 \ 10^{-4} \ rad/s$$
 (cas de base)

Évolution selon le demi-grand axe :

Évolution selon l'inclinaison :

Autres changements:

- disparition de la structure si e diminue et apparition de nouvelles si e augmente.
- décalage de la structure vers la droite si on augmente la masse.

Résonance gravitationnelle ?

= résonance entre :

- la rotation sur lui-même du primaire
- la révolution du secondaire.

Ici, on a

Introduction

- P = 4,63336736333 heures pour tous les points du graphique.
- La période de révolution du secondaire est propre à chaque point :

Tests sur quelques points :

 P_1 : b=18600 m, c=8970 m et $\overline{Y} \to 2$ P_2 : b=18911 m, c=8970 m et $\overline{Y} \to +\infty$ P_3 : b=20100 m. c=8970 m et $\overline{Y} \rightarrow 2$

	période pour P ₁	période pour P2	période pour P ₃
	(jours)	(jours)	(jours)
М	$\simeq 2.5$		<i>~</i> 2.48

Analyse en fréquences

Analyse en fréquence utilisée : FMA de J. Laskar

Principe:

Soit f(t) fonction du temps, régulière et quasi-périodique Et l'amplitude des coefficients de Fourier de f, a_k décroissent avec k.

 \Rightarrow approximation f'(t) du signal donné avec un certain nombre N d'harmoniques.

$$f(t) = \sum_{k=1}^{+\infty} a_k e^{i\nu_k t} \quad \Rightarrow \quad f'(t) = \sum_{k=1}^{N} a'_k e^{i\nu'_k t}$$

Autre fonction calculée : la dérivée seconde numérique :

$$\delta^2 \nu_1(a) = \nu_1(a) - 2\nu_1(a-h) + \nu_1(a-2h).$$

On fixe c = 8970 m et b varie.

Analyse de $(\overline{a} * cos(M), \overline{a} * sin(M))$:

M=3.895551 10^6 kg, orbite initiale adaptée (notamment $i\simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

Analyse de $(i * cos(\Omega), i * sin(\Omega))$:

Analyse de $(e * cos(\omega), e * sin(\omega))$:

Analyse de $(\overline{a} * cos(M + \omega + \Omega), \overline{a} * sin(M + \omega + \Omega))$:

Tests sur quelques points :

 P_1 : b=18600 m et $\overline{Y} \rightarrow 2$

 P_2 : b=18911 m et $\overline{Y} \to +\infty$

 P_3 : b=20100 m et $\overline{Y} \rightarrow 2$

	période pour P_1	période pour P_2	période pour P ₃
	(jours)	(jours)	(jours)
Ω	212.3	208.0	195.6
ω	108.8	102.7	97.8
М	$\simeq 2.5$	$\simeq 2.48$	$\simeq 2.48$

Simulations numériques

Résonance entre ces périodes ?

Combien de degrés de liberté ?

- 1 degré pour la rotation du primaire : période de rotation du corps central
- 3 degrés pour la révolution du secondaire :
 - période orbitale
 - période du péricentre
 - période du noeud ascendant

On regarde au centre de la résonance : en $\frac{b}{a}=0.657$, c-à-d b=19644.3 m.

	période (jours)	
θ	0.193057	
Μ	2.512	
ω	102.6	
Ω	202	

 \Rightarrow seule résonance possible : entre M et $P \to \frac{periode(M)}{periode(\theta)} = 13.01170$.

- résonance $1:12 \rightarrow periode(M) = 2.316684$ jours
- résonance $1:14 \rightarrow periode(M) = 2.702798$ jours

Simulations numériques

⇒ elles sont toutes les deux en dehors!

Développement analytique

Hypothèses:

- mouvement dans un plan
- e=0
- $\frac{b}{a}$ et $\frac{c}{a}$ sont petits

Alors,

$$V = -\frac{3}{2}\mu \int_{\lambda_1}^{+\infty} \left(1 - \frac{x^2}{s^2} \frac{y^2}{s^2 - h^2}\right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$
$$= -\frac{\mu^4}{10} \frac{a^2}{L^6} (\beta^2 - \frac{1}{2}\alpha^2)$$

avec

•
$$L^2 = \mu \overline{a}$$

•
$$\alpha^2 = 1 - \frac{b^2}{a^2}$$
 et $\beta^2 = 1 - \frac{c^2}{a^2}$

⇒ Pas de résultats !

Hypothèses:

- mouvement dans un plan
- $e \neq 0$
- $\frac{b}{a}$ et $\frac{c}{a}$ sont petits

Alors,

$$V = -\frac{3}{2}\mu \int_{\lambda_1}^{+\infty} \left(1 - \frac{x^2}{s^2} \frac{y^2}{s^2 - h^2}\right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$
$$= -\frac{\mu^4}{10} \frac{a^2}{L^6} \left(\frac{1 + e\cos f}{1 - e^2}\right)^3 (\beta^2 - \frac{1}{2}\alpha^2)$$

avec

• f = anomalie vraie

⇒ Pas de résultats!

Validation du code

Différents tests ont été effectués :

 quadrature beaucoup plus fine lors de l'évalution de l'intégrale qui donne le potentiel.

Résultats : aucuns changements

• ré-estimation du pas à prendre avec rk4 et du pas maximal à fixer avec rkfpv.

Résultats : nos pas sont bons

comparaison avec les harmoniques sphériques.

Harmoniques sphériques pour un ellipsoïde :

Formule de Boyce :

$$\begin{split} C_{2l,2m} &= \frac{3}{R^{2l}} \frac{l!(2l-2m)!}{2^{2m}(2l+3)(2l+1)!} (2-\delta_{0m}) \\ &\times \sum_{i=0}^{int(\frac{l-m}{2})} \frac{(a^2-b^2)^{m+2i}[c^2-\frac{1}{2}(a^2+b^2)]^{l-m-2i}}{16^i(l-m-2i)!(m+i)!i!}. \end{split}$$

- Convergence si $a < c\sqrt{2}$
- inconnu sinon.
- \Rightarrow sur mes graphes : convergence si $\frac{c}{a} > 0,7071$.

Exemples:

Introduction

29900 m 10000 m 8970 m	29900 m 28000 m 26000 m
-4.3156733137e-01 5.8037975027e-01 -1.1303748396e+00 2.6506957835e+00 -6.9577618257e+00 1.9706713052e+01 -5.8964373824e+01 1.8390123894e+02 -5.9250198027e+02 1.9595087764e+03 -6.6212123506e+03 2.2779138040e+04 -7.9573531082e+04 2.8164489220e+05	-4.1817931160e-002 3.9606477331e-003 -5.0963813726e-004 7.7985151531e-005 -1.3361078353e-005 2.4777372592e-006 -4.8694330662e-007 1.0000677338e-007 -2.1257486879e-008 4.6444819273e-009 -1.0378097561e-009 2.3627171723e-010 -5.4646141845e-011 1.2810751944e-011
3.6460708700e+06 -1.3301579353e+07	-3.0385796524e-012 7.2813245135e-013 -1.7606394581e-013 4.2915608520e-014
	10000 m 8970 m 8970 m -4.3156733137e-01 5.8037975027e-01 -1.1303748396e+00 2.6506957835e+00 -6.9577618257e+00 1.9706713052e+01 -5.8964373824e+01 1.8390123894e+02 -5.9250198027e+02 1.9595087764e+03 -6.6212123506e+03 2.2779138040e+04 -7.9573531082e+04 2.8164489220e+05 -1.0083012948e+06 3.6460708700e+06

Exemple : $M=5.693498\,10^6$ kg, et vitesse de rotation = 3.76687×10^{-4} rad/s

Avec le potentiel ellipsoïdal :

Avec les harmoniques sphériques : (jusqu'à $C_{18,18}$)

Évolution selon le nombre d'harmoniques :

Introduction

Simulations numériques

Références

- Scheeres D. J., Stability of Binary Asteroids, in *Icarus*, 159, 271-283, 2002
- Scheeres D. J., Relative Equilibria for General Gravity Field in th Sphere-Restricted Full 2-Body problem, in *Celestial Mechanics and Dynamical Astronomy*, 94, 317-349, 2006
- Petit J-M, Durda D., Greenberg R., Hurford T. A., Geissler P. E., The Long-Term Dynamics of Dactyl's Orbit, in *Icarus*, 130, 177-197, 1997
- Rossi A., Marzari F., Farinella P., Orbital Evolution around Irregular Bodies, in Earth Planets Space, 51, 1173-1180, 1999
- Garmier R., Barriot J-P, Ellipsoidal Harmonic Expansions of the Gravitational Potential: Theory and Application, in *Celestial Mechanics and Dynamical Astronomy*, **79**, 235-275, 2001

Cartes de chaos