◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Stabilité des satellites d'astéroïdes

Audrey Compère

Département de mathématique FUNDP Namur

Séminaire de Systèmes Dynamiques 14 octobre 2009

Simulations numériques

Cartes de chaos

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Table des matières

Introduction

- Les satellites d'astéroïdes
 - Système Ida-Dactyl
 - Travail de J-M Petit sur Ida-Dactyl (1997)

3

Simulations numériques

- Bases
- Calcul du potentiel
- Indicateur de chaos : le MEGNO
- Tests sur Ida-Dactyl

Cartes de chaos

- Résonance gravitationnelle ?
- Analyse en fréquence
- Résonance entre d'autres angles ?
- Développement analytique
- Validation du code

Introc	luction
	a c c o n

Simulations numériques

Cartes de chaos

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introduction

Astéroïde binaire : système de deux astéroïdes tournant l'un autour de l'autre.

Formes possibles :

 Les deux corps ont plus ou moins la même taille : astéroïde double Ex : antiope

Un corps est vraiment plus petit que l'autre : astéroïde et son satellite Ex : Ida-Dactyl

Simulations numériques

Cartes de chaos

Cas étudié : les satellites d'astéroïdes

Modèle :

- \rightarrow corps primaire : de forme quelconque
- $\rightarrow \mathsf{satellite}$

: petit et distant du primaire \Rightarrow masse ponctuelle

Remarque : le même modèle peut être utilisé pour le mouvement d'une sonde autour d'un astéroïde irrégulier

Simulations numériques

Cartes de chaos

Système Ida-Dactyl

Ida \rightarrow astéroïde de la ceinture principale (famille Koronis) \rightarrow forme très irrégulière et spin rapide

	Ida	Dactyl
Masse	(4.2 \pm 0.6) \times 10^{16} kg	$\sim 4.10^{12}~{ m kg}$
Diamètres	59800 \times 25400 \times 18600 m	$1600\times1400\times1200$ m

Demi-grand axe de Dactyl : \sim 108 km

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Dactyl :

<u>Orbit data :</u>		
Semimajor axis (a) Orbital period (P) Eccentricity (e)	: :	108 km 1.54 d ≥ 0.2?
<u>Other data :</u>		
Mean radius	:	0.7 km
Principal diameters	:	1.6 imes1.4 imes1.2 km
Shape	:	less irregular then Ida
Ellisoidal fit (radii)	:	0.8 imes0.7 imes0.6 km
Masse	:	$\sim 4.10^{12}~{ m kg}$
Surface area	:	6,3 km ²
Volume		$1.4 \ km^3$
Volume		1,1,1,1,1,1

$\Rightarrow \text{II reste beaucoup d'inconnues } !!$

Travail de J-M Petit sur Ida-Dactyl (1997)

Contexte :

- La masse d'Ida n'est pas déterminée avec précision.
- Pour chaque masse, il y a une orbite képlérienne de Dactyl correspondant aux observations

Rem : L'influence du Soleil et de Jupiter sur le système est négligeable donc négligé.

	GM ²	Density ³	a	e	i	Ω	ω	f	w+f	Period	R _p ⁶	WRMS'
	(km ³ .sec ⁻²)	(g.cm ⁻³)	(km)		(deg)	(deg)	(deg)	(deg)	(deg)	(hrs)	(km)	(pixels)
<u>s</u>	0.00100	1.68	39.0	2.77	170.47	-31.26	-27.67	42.04	14.38	-	69 1	0.200
6	0.00190	1.77	50.4	2.33	170.57	-31.54	-26.69	40.81	14.12		70.7	0.181
5	0.00200	1.86	78.5	1.92	170.00	31.82	-25.40	39.32	13.83	-	72.5	0.167
£	0.00210	1.96	132.8	1.56	170.02	-32.10	-24.00	27.60	13.54	-	74.4	0.164
å	0.00220	2.05	004.1	1.25	170.97	-32.34	-22.42	35.70	13.20		76.3	0.168
£.	0000020	2.10	650.9	1.12	171.04	-32.44	-21.54	34.71	13.17		77.2	0.170
-	0.00230	2.14	7912.0	0.99	171.12	-32.54	-20.51	33.56	13.06	25612.0	78.1	0.174
	0.00235	2.19	667.0	0.88	171.19	-32.63	-19.50	32.47	12.97	620.2	79.0	0.177
	0.00240	2.24	355.4	0.78	171.27	-32.71	-18.29	31.16	12.87	238.7	79.8	0.180
	0.00250	2.33	200.8	0.59	171.41	-32.85	-15.52	28.23	12.71	99.3	81.4	0.185
	0.00260	2.42	148.8	0.44	171.56	-32.97	-11.87	24.46	12.58	62.2	82.9	0.190
	0.00280	2.61	107.7	0.21	171.84	-33.13	2.54	9.85	12.39	36.9	85.0	0.197
	0.00290	2.70	97.6	0.13	171.97	-33.19	21.41	-9.09	12.32	31.3	85.1	0.199
	0.00300	2.79	90.5	0.09	172.10	-33.24	63.56	-51.30	12.27	27.5	82.7	0.200
	0.00310	2.89	85.4	0.11	172.23	-33.28	107.67	-95.44	12.23	24.7	76.1	0.201
	0.00320	2.98	81.4	0.16	172.36	-33.30	127.84	-115.64	12.20	22.7	68.6	0.201
	0.00340	3.17	76.0	0.26	172.61	-33.33	142.68	-130.50	12.17	19.8	56.2	0.201
	0.00360	3.35	72.4	0.35	172.85	-33.32	148.77	-136.59	12.18	17.9	47.2	0.199
	0.00380	3.54	70.1	0.42	173.09	-33.28	152.36	-140.14	12.22	16.6	40.5	0.197
	0.00420	3.91	67.4	0.54	173.57	-33.12	156.87	-144.49	12.38	14.9	31.1	0.192

Belton,1996

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

1. Bornes de stabilité sur la masse d'Ida ?

Premier modèle

Ida est approximé par un ellipsoïde. Potentiel gravitationnel : intégrales elliptiques Intégrateur : Bulirsch and Stoer avec une précision de 10⁻¹⁰

Résultats :

- Les orbites pour $M > 4.93 \times 10^{16}$ kg (q < 63 km) sont très instables.
 - \rightarrow crash ou échappée après quelques heures ou quelques jours !

Les autres orbites sont stables sur plusieurs centaines d'années.

Deuxième modèle

Approximation d'Ida par une collection de 44 sphères de tailles différentes.

 \Rightarrow borne plus précise.

Simulations numériques

Cartes de chaos

Simulations numériques

Ma recherche : conditions de stabilité d'un satellite d'astéroïde

Modèle : Une masse ponctuelle tournant autour d'un ellipsoïde

Variation de paramètres :

- forme du primaire
- masse du primaire
- rotation du primaire
- orbite initiale du satellite
 - \Rightarrow système stable ? \Rightarrow résonances ?

Mise en oeuvre : cartes de chaos

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Simulations numériques

Cartes de chaos

Bases

Code utilisé : programme Nimastep de Nicolas Delsate

Prévu pour : intégration numérique du mouvement d'un satellite artificiel autour d'une planète tellurique

ightarrow pas prévu pour le cas d'un satellite d'astéroïde MAIS cas proche !

Différences :

- la forme irrégulière du corps primaire
- la rotation rapide du corps primaire
- l'excentricité souvent grande de l'orbite du satellite
- l'ordre d'importance des forces :

・ロッ ・雪 ・ ・ ヨ ・ ・

-

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- 1. <u>Premiers tests</u> : article de A. Rossi (1999)
 - \rightarrow Article qui teste des façons de calculer le potentiel d'un corps irrégulier.

Variation du noeud ascendant sur des ellipsoïdes axisymétriques (en rad s^{-1}) :

	théorie des pertubations	méthode polygones	méthode mascon	harmo sphériques
ellipsoïde avec une orbite circulaire inclinée	-7.7 10 ⁻⁶	-1.09 10 ⁻⁵	-1.11 10 ⁻⁵	-1.07 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée	-8.37 10 ⁻⁶	-1.25 10 ⁻⁵	-1.33 10 ⁻⁵	-1.27 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée et distante	-7.10 10 ⁻⁷	-7.76 10 ⁻⁷	-7.92 10 ⁻⁷	-7.85 10 ⁻⁷

 \Rightarrow résultats convaincants

Simulations numériques

Cartes de chaos

Calcul du potentiel

Adaptation à faire : calcul du potentiel dù à la forme de l'astéroïde

Usuellement : utilisation des harmoniques sphériques

= déformations d'une sphère

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

$$V(r,\theta,\lambda) = \frac{GM}{r} \left[1 + \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R_e}{r} \right)^n P_{nm}(\sin\theta) \left(C_{nm} \cos m\lambda + S_{nm} \sin m\lambda \right) \right],$$

où

- (r, θ, λ) sont les coordonnées sphérique d'un point à l'extérieur de la sphère
- R_e est le rayon de la sphère
- P_{nm} sont les polynômes de Legendre
- C_{nm} et S_{nm} sont les coefficients du potentiel.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Alternative : les harmoniques ellipsoïdales

= déformations d'un ellipsoïde

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

$$V(\lambda_1, \lambda_2, \lambda_3) = GM \sum_{n=0}^{+\infty} \sum_{p=1}^{2n+1} \alpha_n^p \frac{F_n^p(\lambda_1)}{F_n^p(a)} E_n^p(\lambda_2) E_n^p(\lambda_3),$$

où

- (λ₁, λ₂, λ₃) sont les coordonnées ellipsoïdales d'un point à l'extérieur de la sphère
- a est le demi-grand axe de l'ellipsoïde de référence
- *E_n^p* et *F_n^p* sont respectivement les fonctions du premier et du deuxième ordre de Lamé
- α_n^p est un coefficient équivalent aux C_{nm} et S_{nm} du cas sphérique

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Cas particulier des harmoniques elliptiques : Potentiel pour un ellipsoïde (Mac Millan,1958)

$$V(x_1, x_2, x_3) = \frac{3}{2} GM \int_{\lambda_1}^{+\infty} \left(1 - \frac{x_1^2}{s^2} - \frac{x_2^2}{s^2 - h^2} - \frac{x_3^2}{s^2 - k^2} \right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$

où

- h² = a² − b² et k² = a² − c² (a, b et c sont les demi-grands axes de l'ellipsoïde avec a ≥ b ≥ c)
- (x₁, x₂, x₃) sont les coordonnées cartésiennes du point où on veut calculer le potentiel
- λ_1 est la première coordonnée ellipsoïdale de ce point.

n	•	\mathbf{a}	а		\sim	- 1	0	n
		0	J	L L	J		0	

Simulations numériques

Les coordonnées ellipsoïdales :

Ellipsoïde de référence (le plus petit ellipsoïde contenant le corps et centré au même centre de masse) :

$$\Gamma_0 := rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1 \qquad ext{avec } a \geq b \geq c$$

Longueurs focales :

$$\begin{aligned} h^2 &= a^2 - b^2 \\ k^2 &= a^2 - c^2 \end{aligned} \Rightarrow h^2 \leq k^2 \end{aligned}$$

Alors $\Gamma_0 := \frac{x^2}{a^2} + \frac{y^2}{a^2 - h^2} + \frac{z^2}{a^2 - k^2} = 1.$

A un point (x, y, z) on peut associer l'équation $\frac{x^2}{s^2} + \frac{y^2}{s^2 - h^2} + \frac{z^2}{s^2 - k^2} = 1$ où *s* est inconnue.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Simulations numériques

Cartes de chaos

Cette équation correspond à

• un ellipsoïde si $k^2 \leq s^2$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$$

• un hyperboloïde à une nappe si $h^2 \leq s^2 \leq k^2$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = 1$$

• un hyperboloïde à deux nappes si $s^2 \leq h^2$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} - \frac{z^2}{C^2} = -1$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

10.0		\sim	~		\sim		0	n
		c,	u	u	-	. 1	S	

Pour chaque (x, y, z) on a

$$\frac{x^2}{s^2} + \frac{y^2}{s^2 - h^2} + \frac{z^2}{s^2 - k^2} = 1 \qquad \Rightarrow \text{ équation d'ordre 3 en } s^2$$

 $\text{Racines}: \ \lambda_1^2, \ \lambda_2^2 \ \text{et} \ \lambda_3^2 \ \text{et on a} \ 0 \leq \lambda_3^2 \leq h^2 \leq \lambda_2^2 \leq k^2 \leq \lambda_1^2.$

Donc (x, y, z) est à l'intersection entre

- un ellipsoïde de demi-axes $(\sqrt{\lambda_1^2}, \sqrt{\lambda_1^2 h^2}, \sqrt{\lambda_1^2 k^2})$
- un hyperboloïde à 1 nappe de demi-axes $(\sqrt{\lambda_2^2}, \sqrt{\lambda_2^2 h^2}, \sqrt{k^2 \lambda_2^2})$
- un hyperboloïde à 2 nappes de demi-axes $(\sqrt{\lambda_3^2}, \sqrt{h^2 \lambda_3^2}, \sqrt{k^2 \lambda_3^2})$

 $\begin{array}{rcl} \text{Coord cart} & \to & \text{Coord ellips} \\ (x,y,z) & \to & (\lambda_1^2,\lambda_2^2,\lambda_3^2) \end{array}$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Cas particuliers :

 (x, y, z) est sur Γ₀ : alors l'ellipsoïde associé à (x,y,z) est Γ₀ :

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - h^2} + \frac{z^2}{a^2 - k^2} = 1$$

 \Rightarrow (x, y, z) est à l'intersection de Γ_0 et de 2 hyperboloïdes.

 P₀ est une sphère ⇒ a = b = c ⇒ k = h = 0 Alors, l'équation associée à (x, y, z) est l'équation d'un cercle :

$$x^2 + y^2 + z^2 = s^2$$

C'est un cas dégénéré où les hyperboloïdes ne sont pas définis (λ_2^2 et λ_3^2 n'existent pas).

3 a = b ou $b = c \Rightarrow$ un des deux hyperboloïdes n'est pas défini.

MAIS λ_1^2 est toujours définie.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Calculer ($\lambda_1^2,\lambda_2^2,\lambda_3^2)$ numériquement :

- 2 on en déduit la plus petite valeur entre λ_i^2 , $|\lambda_i^2 h^2|$ et $|\lambda_i^2 k^2|$,
- on transforme l'équation cubique pour que la quantité précédente soit la nouvelle racine,
 - \rightarrow pour éviter les petits diviseurs
- On résoud la nouvelle équation par la méthode des sécantes et on calcule λ_i^2 , $|\lambda_i^2 - h^2|$ et $|\lambda_i^2 - k^2|$.
- \Rightarrow Bonnes approximations !

Simulations numériques

Cartes de chaos

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Potentiel pour un ellipsoïde :

$$V(x_1, x_2, x_3) = \frac{3}{2} GM \int_{\lambda_1}^{+\infty} \left(1 - \frac{x_1^2}{s^2} - \frac{x_2^2}{s^2 - h^2} - \frac{x_3^2}{s^2 - k^2} \right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$
$$= \frac{3}{2} GM \int_{\lambda_1}^{+\infty} f(s, x_1, x_2, x_3) ds$$

оù

- a, b et c $(a \ge b \ge c)$ sont les demi-grands axes de l'ellipsoïde
- (x1, x2, x3) sont les coordonnées cartésiennes du point où on veut calculer le potentiel
- λ₁ est la première coordonnée ellipsoïdale de ce point.

Calcul de la force :

$$V(x_{1}, x_{2}, x_{3}) = \frac{3}{2} GM \int_{\lambda_{1}}^{+\infty} f(s, x_{1}, x_{2}, x_{3}) ds$$

$$F_{\mathbf{x}_{i}} = \frac{\partial V}{\partial x_{i}} = \frac{\partial V}{\partial x_{i}} (x_{1}, x_{2}, x_{3}, \lambda_{1} = cste) + \frac{\partial V}{\partial \lambda_{1}} \frac{\partial \lambda_{1}}{\partial x_{i}}$$

$$= \frac{3}{2}GM \int_{\lambda_1}^{+\infty} \frac{\partial f}{\partial x_i}(s, x_1, x_2, x_3)ds - \frac{3}{2}GM f(\lambda_1, x_1, x_2, x_3)\frac{\partial \lambda_1}{\partial x_i}$$
$$= \frac{3}{2}GM \int_{\lambda_1}^{+\infty} \frac{\partial f}{\partial x_i}(s, x_1, x_2, x_3)ds - 0$$

Donc,

$$F_{\mathbf{x_1}} = \frac{\partial V}{\partial x_1} = -3x_1 GM \int_{\lambda_1}^{+\infty} \frac{ds}{s^2 (s^2 - h^2)^{1/2} (s^2 - k^2)^{1/2}}$$

$$F_{\mathbf{x_2}} = \frac{\partial V}{\partial x_2} = -3x_2 GM \int_{\lambda_1}^{+\infty} \frac{ds}{(s^2 - h^2)^{3/2} (s^2 - k^2)^{1/2}}$$

$$F_{\mathbf{x_3}} = \frac{\partial V}{\partial x_3} = -3x_3 GM \int_{\lambda_1}^{+\infty} \frac{ds}{(s^2 - h^2)^{1/2} (s^2 - k^2)^{3/2}}$$

Calcul des intégrales : quadrature de Gauss-Legendre après changements de variables (car fonctions strictement monotones)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Tests du nouveau potentiel : article de Rossi (1999)

Variation du noeud ascendant sur des ellipsoïdes axisymétriques (en rad s^{-1}) :

	pertubations	polygones	mascon	harmo. Sphér.	intégrale
ellipsoïde avec une orbite circulaire inclinée	-7.7 10 ⁻⁶	-1.09 10 ⁻⁵	-1.11 10 ⁻⁵	-1.07 10 ⁻⁵	-1.11 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée	-8.37 10 ⁻⁶	-1.25 10 ⁻⁵	-1.33 10 ⁻⁵	-1.27 10 ⁻⁵	-1.33 10 ⁻⁵
ellipsoïde avec une orbite elliptique inclinée et distante	-7.10 10 ⁻⁷	-7.76 10 ⁻⁷	-7.92 10 ⁻⁷	-7.85 10 ⁻⁷	-7.86 10 ⁻⁷

 \Rightarrow résultats convaincants

Simulations numériques

Cartes de chaos

ション ふゆ アメリア メリア しょうくの

Indicateur de chaos : le MEGNO

MEGNO = Mean Exponential Growth factor of Nearby Orbits (Cincotta et Simó, 2000)

Soit :

- Le flot d'un système dynamique à $n \dim : \frac{d}{dt}x(t) = f(x(t)), x \in \mathbb{R}^{2n}$.
- \$\phi(t)\$ l'orbite au temps \$t\$
- $\delta_{\phi}(t)$ un vecteur tangent le long de cette orbite avec $\dot{\delta_{\phi}} = \frac{\partial f}{\partial x}(\phi(t))\delta_{\phi}(t)$.

Alors, le MEGNO est

$$Y_{\phi}(t) = rac{2}{t} \int_0^t rac{\dot{\delta}_{\phi} \cdot \delta_{\phi}}{\delta_{\phi} \cdot \delta_{\phi}} \, s \, ds$$

= caractérisation du taux de divergence entre deux orbites proches.

Simulations numériques

Cartes de chaos

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tests sur Ida-Dactyl

Tests sur certaines orbites possibles de Dactyl (avec des excentricités pas trop grandes) :

GM ²	Density ³	aʻ	e	i	Ω	60	f	w+f	Period	R _p ⁶	WRMS'
(km ³ .sec ⁻²)	(g.cm ⁻³)	(km)		(deg)	(deg)	(deg)	(deg)	(deg)	(hrs)	(km)	(pixels)
0.00180	1.68	39.0	2.77	170.47	-31.26	-27.67	42.04	14.38	-	69.1	0.209
0.00190	1.77	53.1	2.33	170.57	-31.54	-26.69	40.81	14.12	-	70.7	0.181
0.00200	1.86	78.5	1.92	170.68	-31.82	-25.49	39.32	13.83	-	72.5	0.167
0.00210	1.96	132.8	1.56	170.82	-32.10	-24.06	37.60	13.54	-	74.4	0.164
0.00220	2.05	304.1	1.25	170.97	-32.34	-22.42	35.70	13.28	-	76.3	0.168
0.00225	2.10	650.9	1.12	171.04	-32.44	-21.54	34.71	13.17	-	77.2	0.170
0.00230	2.14	7912.0	0.99	171.12	-32.54	-20.51	33.56	13.06	25612.0	78.1	0.174
0.00235	2.19	667.0	0.88	171.19	-32.63	-19.50	32.47	12.97	620.2	79.0	0.177
0.00240	2.24	355.4	0.78	171.27	-32.71	-18.29	31.16	12.87	238.7	79.8	0.180
0.00250	2.33	200.8	0.59	171.41	-32.85	-15.52	28.23	12.71	99.3	81.4	0.185
0.00260	2.42	148.8	0.44	171.56	-32.97	-11.87	24.46	12.58	62.2	82.9	0.190
0.00280	2.61	107.7	0.21	171.84	-33.13	2.54	9.85	12.39	36.9	85.0	0.197
0.00290	2.70	97.6	0.13	171.97	-33.19	21.41	-9.09	12.32	31.3	85.1	0.199
0.00300	2.79	90.5	0.09	172.10	-33.24	63.56	-51.30	12.27	27.5	82.7	0.200
0.00310	2.89	85.4	0.11	172.23	-33.28	107.67	-95.44	12.23	24.7	76.1	0.201
0.00320	2.98	81.4	0.16	172.36	-33.30	127.84	-115.64	12.20	22.7	68.6	0.201
0.00340	3.17	76.0	0.26	172.61	-33.33	142.68	-130.50	12.17	19.8	56.2	0.201
0.00360	3.35	72.4	0.35	172.85	-33.32	148.77	-136.59	12.18	17.9	47.2	0.199
0.00380	3.54	70.1	0.42	173.09	-33.28	152.36	-140.14	12.22	16.6	40.5	0.197
0.00420	3.91	67.4	0.54	173.57	-33.12	156.87	-144.49	12.38	14.9	31.1	0.192

Resultats :

- Crash ou échappée des orbites pour $M\gtrsim 5 imes 10^{16}~{
 m kg}$
- Orbites régulières pour $M \lesssim 5 \times 10^{16} \ {\rm kg}$
- \Rightarrow même résultats que Petit

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Cartes de chaos

De façon plus générique : Quels systèmes sont stables/chaotiques ? Y a-t-il des zones de résonances ?

On fixe :

- la masse et la rotation de l'astéroïde (l'ellipsoïde)
- l'orbite initiale du satellite (Valeurs proches du cas Ida-Dactyl)
- a, le plus grand demi-axe de l'ellipsoïde

On fait varier la forme du primaire (les demi-axes b et c).

Intégrateur utilisé : Runge-Kutta-Fehlberg à pas variables Précision : 10^{-12}

・ロト ・個ト ・モト ・モト

æ

M=3.89555110⁶ kg, orbite initiale adaptée (notamment $i\simeq$ 2.99) et vitesse de rotation = -3.76687 \times 10⁻⁴ rad/s

M=3.74572210⁶ kg, orbite initiale adaptée (notamment $i \simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

・ロト ・個ト ・モト ・モト

æ

M=5.693498 10⁶ kg, orbite initiale adaptée (notamment $i \simeq 2.99$) et vitesse de rotation = 3.76687×10^{-4} rad/s

Int	- 11	\sim	r l i			<u> </u>	
		~	•	 -		~	

Simulations numériques

(日) (同) (日) (日)

э

Mais dans ces graphiques, la masse est constante. \rightarrow toutes les configurations ne sont pas possibles...

イロト イポト イヨト イヨト

æ

Si on fixe la densité de masse et pas la masse :

M=3.89555110⁶ kg, orbite initiale adaptée (notamment $i \simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

Simulations numériques

Cartes de chaos

Évolution selon le temps :

Après 5 ans :

Après 10 ans :

900

Simulations numériques

Cartes de chaos

Évolution selon la vitesse de rotation :

Simulations numériques

Cartes de chaos

Évolution selon le demi-grand axe :

Simulations numériques

Cartes de chaos

Évolution selon l'inclinaison :

Autres changements :

- disparition de la structure si e diminue et apparition de nouvelles si e augmente.
- décalage de la structure vers la droite si on augmente la masse.

Simulations numériques

Cartes de chaos

Résonance gravitationnelle ?

- = résonance entre :
 - la rotation sur lui-même du primaire
 - la révolution du secondaire.

lci, on a

- P = 4,63336736333 heures pour tous les points du graphique.
- La période de révolution du secondaire est propre à chaque point :

Tests sur quelques points :

$$P_1$$
: b=18600 m, c=8970 m et $\overline{Y} \rightarrow 2$

- P_2 : b=18911 m, c=8970 m et $\overline{Y} \to +\infty$
- P_3 : b=20100 m, c=8970 m et $\overline{Y} \rightarrow 2$

	période pour P ₁	période pour P ₂	période pour P ₃
	(jours)	(jours)	(jours)
Μ	$\simeq 2.5$	$\simeq 2.48$	$\simeq 2.48$

 \Rightarrow résonance 1:13 ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Analyse en fréquences

Analyse en fréquence utilisée : FMA de J. Laskar

Principe :

Soit f(t) fonction du temps, régulière et quasi-périodique Et l'amplitude des coefficients de Fourier de f, a_k décroissent avec k.

 \Rightarrow approximation f'(t) du signal donné avec un certain nombre N d'harmoniques.

$$f(t) = \sum_{k=1}^{+\infty} a_k e^{i\nu_k t} \quad \Rightarrow \quad f'(t) = \sum_{k=1}^{N} a'_k e^{i\nu'_k t}$$

Autre fonction calculée : la dérivée seconde numérique :

$$\delta^2 \nu_1(a) = \nu_1(a) - 2\nu_1(a-h) + \nu_1(a-2h).$$

t 12	\sim		0	÷.	0	n
u 1	J	u	-	CI.	S	

Simulations numériques

On fixe c = 8970 m et b varie.

Analyse de $(\overline{a} * cos(M), \overline{a} * sin(M))$:

≧ _ _ のへの

・ロト ・個ト ・モト ・モト

æ

M=3.89555110⁶ kg, orbite initiale adaptée (notamment $i \simeq 2.99$) et vitesse de rotation = -3.76687×10^{-4} rad/s

0.4

0.4

0.4

0.5

0.5

0.5

Analyse de $(i * cos(\Omega), i * sin(\Omega))$:

Satellites d'astéroïdes

Introduction

Analyse de $(e * cos(\omega), e * sin(\omega))$:

LigneMu260AnalFreq-09-1020-1120/zLigneMu260AnalFreq*_dat

Period - Signal 3 - Frequence1 --- Tps=1j

6.0

0.6

0.6

B/A

X:0.657

Y: 102.8

0.7

0.7

0.8

0.8

8.0

0.9

0.9

0.9

Analyse de
$$(\overline{a} * cos(M + \omega + \Omega), \overline{a} * sin(M + \omega + \Omega))$$
:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Tests sur quelques points :

 $P_{1}: b=18600 \text{ m et } \overline{Y} \to 2$ $P_{2}: b=18911 \text{ m et } \overline{Y} \to +\infty$ $P_{3}: b=20100 \text{ m et } \overline{Y} \to 2$

	période pour P ₁	période pour P ₂	période pour P ₃
	(jours)	(jours)	(jours)
Ω	212.3	208.0	195.6
ω	108.8	102.7	97.8
Μ	$\simeq 2.5$	$\simeq 2.48$	$\simeq 2.48$

Simulations numériques

Cartes de chaos ○○○○○○●○○○○○

Résonance entre ces périodes ?

Combien de degrés de liberté ?

- 1 degré pour la rotation du primaire : période de rotation du corps central
- 3 degrés pour la révolution du secondaire :
 - période orbitale
 - période du péricentre
 - période du noeud ascendant

On regarde au centre de la résonance : en $\frac{b}{a} = 0.657$, c-à-d b = 19644.3 m.

	période (jours)
θ	0.193057
Μ	2.512
ω	102.6
Ω	202

 \Rightarrow seule résonance possible : entre M et $P \rightarrow \frac{periode(M)}{periode(\theta)} = 13.01170.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Satellites d'astéroïdes 0000	Simulations numériques	Cartes de chaos ○○○○○○○●○○○○○

Pourquoi on ne voit que cette résonance-là (résonance 1:13) ?

- résonance $1:12 \rightarrow periode(M) = 2.316684$ jours
- résonance $1:14 \rightarrow periode(M) = 2.702798$ jours

 \Rightarrow elles sont toutes les deux en dehors !

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Simulations numériques

Cartes de chaos ○○○○○○○○○○○○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Développement analytique

Hypothèses :

- mouvement dans un plan
- e=0

•
$$\frac{b}{a}$$
 et $\frac{c}{a}$ sont petits

Alors,

$$V = -\frac{3}{2}\mu \int_{\lambda_1}^{+\infty} \left(1 - \frac{x^2}{s^2} \frac{y^2}{s^2 - h^2}\right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$
$$= -\frac{\mu^4}{10} \frac{a^2}{L^6} (\beta^2 - \frac{1}{2}\alpha^2)$$

avec

•
$$L^2 = \mu \overline{a}$$

• $\alpha^2 = 1 - \frac{b^2}{a^2}$ et $\beta^2 = 1 - \frac{c^2}{a^2}$

 \Rightarrow Pas de résultats !

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Hypothèses :

- mouvement dans un plan
- *e* ≠ 0

•
$$\frac{b}{a}$$
 et $\frac{c}{a}$ sont petits

Alors,

$$V = -\frac{3}{2}\mu \int_{\lambda_1}^{+\infty} \left(1 - \frac{x^2}{s^2} \frac{y^2}{s^2 - h^2}\right) \frac{ds}{\sqrt{s^2 - h^2}\sqrt{s^2 - k^2}}$$
$$= -\frac{\mu^4}{10} \frac{a^2}{L^6} \left(\frac{1 + e\cos f}{1 - e^2}\right)^3 (\beta^2 - \frac{1}{2}\alpha^2)$$

avec

• f = anomalie vraie

 \Rightarrow Pas de résultats !

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Validation du code

Différents tests ont été effectués :

- quadrature beaucoup plus fine lors de l'évalution de l'intégrale qui donne le potentiel. Résultats : aucuns changements
- ré-estimation du pas à prendre avec rk4 et du pas maximal à fixer avec rkfpv.

Résultats : nos pas sont bons

• comparaison avec les harmoniques sphériques.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Harmoniques sphériques pour un ellipsoïde :

Formule de Boyce :

$$C_{2l,2m} = \frac{3}{R^{2l}} \frac{l!(2l-2m)!}{2^{2m}(2l+3)(2l+1)!} (2-\delta_{0m})$$

$$\times \sum_{i=0}^{int(\frac{l-m}{2})} \frac{(a^2-b^2)^{m+2i}[c^2-\frac{1}{2}(a^2+b^2)]^{l-m-2i}}{16^i(l-m-2i)!(m+i)!i!}.$$

• Convergence si
$$a < c\sqrt{2}$$

inconnu sinon.

 \Rightarrow sur mes graphes : convergence si $\frac{c}{a} > 0,7071$.

Introduction	Satellites	d'astéroïdes	Simulations numériques	Cartes de chaos
Exemples :				
	a	29900 m	29900 m	
	b	10000 m	28000 m	
_	с	8970 m	26000 m	_
	C2 0	-4.3156733137e-01	-4.1817931160e-002	
	$C_{4,0}$	5.8037975027e-01	3.9606477331e-003	
	$C_{6.0}$	-1.1303748396e+00	-5.0963813726e-004	
	C _{8.0}	2.6506957835e+00	7.7985151531e-005	
	$C_{10.0}$	-6.9577618257e+00	-1.3361078353e-005	
	C _{12.0}	1.9706713052e+01	2.4777372592e-006	
	C _{14,0}	-5.8964373824e+01	-4.8694330662e-007	
	C _{16.0}	1.8390123894e+02	1.0000677338e-007	
	C _{18.0}	-5.9250198027e+02	-2.1257486879e-008	
	$C_{20.0}$	1.9595087764e+03	4.6444819273e-009	
	C _{22,0}	-6.6212123506e+03	-1.0378097561e-009	
	C _{24.0}	2.2779138040e+04	2.3627171723e-010	
	$C_{26.0}$	-7.9573531082e+04	-5.4646141845e-011	
	C _{28.0}	2.8164489220e+05	1.2810751944e-011	
	C _{30.0}	-1.0083012948e+06	-3.0385796524e-012	
	$C_{32.0}$	3.6460708700e+06	7.2813245135e-013	
	C _{34.0}	-1.3301579353e+07	-1.7606394581e-013	
	C _{36,0}	4.8910742504e+07	4.2915608520e-014	

Introduction	Satellites d'astéroïdes	Simulations numériques	Cartes de chaos
			000000000000000000000000000000000000000
		·	

Exemple : M=5.693498 10^6 kg, et vitesse de rotation = 3.76687×10^{-4} rad/s

Avec le potentiel ellipsoïdal :

Avec les harmoniques sphériques : (jusqu'à C_{18,18})

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

0.65

0.6

0.55

0.55 0.6 0.65

Simulations numériques

Cartes de chaos

Évolution selon le nombre d'harmoniques :

0.7 0.75 0.8 0.85 0.9 0.95

ratio B/A

jusque $C_{12,12}$

590

Cartes de chaos

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Merci !

Références

- Scheeres D. J., Stability of Binary Asteroids, in *Icarus*, 159, 271-283, 2002
- Scheeres D. J., Relative Equilibria for General Gravity Field in th Sphere-Restricted Full 2-Body problem, in *Celestial Mechanics and Dynamical Astronomy*, **94**, 317-349, 2006
- Petit J-M, Durda D., Greenberg R., Hurford T. A., Geissler P. E., The Long-Term Dynamics of Dactyl's Orbit, in *Icarus*, **130**, 177-197, 1997
- Rossi A., Marzari F., Farinella P., Orbital Evolution around Irregular Bodies, in *Earth Planets Space*, **51**, 1173-1180, 1999
- Garmier R., Barriot J-P, Ellipsoidal Harmonic Expansions of the Gravitational Potential : Theory and Application, in *Celestial Mechanics and Dynamical Astronomy*, **79**, 235-275, 2001