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Self-organized patterns are ubiquitous in nature
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:
First system to display self-organization
Regular oscillations between homogeneous
states.

Experimental evidence
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:
First system to display self-organization
Regular oscillations between homogeneous
states.

Experimental evidence

Belousov e Zhabotinsky
Med. Publ. Moscow (1959) - Biofizika (1964)
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The Belousov-Zhabotinsky reaction.

Highlighting the peculiarities:
First system to display self-organization
Regular oscillations between homogeneous
states.

Experimental evidence

Spatially organized patterns develop (Turing
instability) - Vanag e Epstein

Phys. Rev. Lett. (2001)
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Alan Turing (1912-1954)

1 Turing machine, a
general purpose
computer: concepts of
algorithm and
computation with the
Turing machine.

2 Pivotal role in cracking
intercepted coded
messages during II
world war.

3 Mathematical biology:
chemical basis of
morphogenesis.
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Morphogenesis

Morphogenesis is the biological process that causes an organism to
develop its shape.

Morphogenesis addresses the problem of biological form at many
levels, from the structure of individual cells, through the formation of
multicellular arrays and tissues, to the higher order assembly of tissues
into organs and whole organisms.
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The complete and fine detailed understanding of the mechanisms
involved in actual organisms required the discovery of DNA and the
development of molecular biology and biochemistry.

Although the mechanism must be genetically controlled , the genes
themself cannot create the patterns. They only provide a blue print or
recipe, for the pattern generation.

Turing suggested that under certain conditions, chemicals can react
and diffuse in such a way as to produce steady state heterogeneous
spatial patterns of chemical or morphogen concentration.
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Two books
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Deterministic reaction-diffusion systems

Alan Turing
The Turing instability
(1952)

∂tφ = f (φ,ψ) +Dφ ∇
2φ

∂tψ = g(φ,ψ) +Dψ ∇
2ψ

where:

1 φ(r , t) and ψ(r , t) are
the species
concentrations.

2 Dφ and Dψ denote the
diffusion coefficients

Assume a stable homogeneous fixed point of the dynamics to exist
and label it (φ∗, ψ∗).
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An informative albeit unrealistic image (Murray) (1)

1 Consider a field of dry grass with a large number of grasshoppers
which can generate moisture by sweating if they get warm.

2 Suppose the grass is set alight at some point and the front starts
to propagate.

3 When the grasshoppers get warm enough they can generate
enough moisture to dampen the fire: when the flames will reach
the pre-moistened area the grass will not burn.

4 The fire starts to spread. When the grasshoppers ahead of the
flame front feel it coming they move well ahead of it (DG > DF ).

5 The burned area is hence restricted to a given domain which
depends on the parameters of the game.
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An informative albeit unrealistic image (Murray) (2)

1 If instead of a initial single fire there was a random scattering of
them, the process would result in a final spatially inhomogeneous
distribution of burnt and preserved patches.

2 Notice that the inhibitors (grasshoppers) diffuse faster than the
activator (fire).
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I. Stable fixed point of the aspatial model

Assume a stable
homogeneous fixed point of
the dynamics to exist and
label it (φ∗, ψ∗):

f (φ∗, ψ∗) = 0

g(φ∗, ψ∗) = 0

The Jacobian matrix

J = (
fφ fψ
gφ gψ

)

The stability of the fixed point
implies Tr J < 0 and det J > 0.
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II. The perturbation.

Introduce a small non homogeneous perturbation of the fixed point:

w = (
φ − φ∗

ψ − ψ∗) .

and linearize the reaction-diffusion equations to get:

ẇ = Jw +D∇2w ,

where

D = (
Dφ 0
0 Dψ

) .
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III. Laplacian’s eigenfunctions

To solve the linearized system one introduces Wk(x) such that:

∇
2Wk(x) = −k2Wk(x),

Expand the perturbation w as

w(x , t) = ∑
k∈σ

ckeλ(k)tWk(x),

1 ck refer to the initial condition.
2 Equivalent to Fourier transforming the original equation.
3 λ(k) defines the dispersion relation
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Substituting the ansatz in the linear system yields:

λWk = JWk − k2DWk

or equivalently:

(
fφ −Dφk2 − λ fψ

gφ gψ −Dψk2 − λ
)Wk = 0

We require non trivial solutions for Wk which implies that λ is
determined by the roots of the characteristic polynomial:

det(λ(k)I − J −Dk2
) = 0
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The Turing instability occurs if one can isolate a finite domain in k for
which Re(λ(k)) > 0.

A simple calculation (done on the blackboard) yields the following
general condition for the Turing instability to sets in:

(Dφgψ +Dψfφ)
2

> 4DφDψ (fφgψ − fψgφ)

(Dφgψ +Dψfφ) > 0

which sum up to the aforementioned conditions:

fφ + gψ < 0 fφgψ − fψgφ > 0
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Important remarks

1 fφ and gψ must be of opposite sign.
2 Assume fφ > 0 (activator) and gψ < 0 (inhibitor). Then, fφ + gψ < 0

implies:
fφ < ∣gψ ∣

and thus:

Dψ

Dφ
>

∣gψ ∣
fφ

> 1

the inhibitor must diffuse faster than the activator.
3 Boundary conditions do matter.
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The Brusselator model

0 1 2 3 4

k
-10

-5

0

λ

1 Species φ is the
activator,

2 ψ play the role of
the inhibitor.

f (φ,ψ) = a − (b + d)φ + cφ2ψ

g(φ,ψ) = bφ − cφ2ψ
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From a random perturbation of the homogeneous fixed point to a
stationary pattern.
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Turing patterns are widespread
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Patterns on a (symmetric) network.

Adjacency matrix

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯

⋯ 0 1⋯
⋮ ⋮ ⋯ ⋮

⋯ 1 0 1⋯

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wij = 1 , if nodes i and j
are connected (i ≠ j), and
Wij = 0 otherwise

ki = ∑
Ω
j=1 Wij (node degree)

Scale-free network
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Patterns on a (symmetric) network.

Adjacency matrix

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯

⋯ 0 1⋯
⋮ ⋮ ⋯ ⋮

⋯ 1 0 1⋯

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Wij = 1 , if nodes i and j
are connected (i ≠ j), and
Wij = 0 otherwise

ki = ∑
Ω
j=1 Wij (node degree)

Reaction-diffusion equations

∂tφi = f (φi , ψi) +Dφ

Ω

∑
j=1

∆ijφi

∂tψi = g(φi , ψi) +Dψ

Ω

∑
j=1

∆ijψi

where i = 1, ..,Ω and ∆ij = Wij − kiδij is
the discrete Laplacian operator.
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Linear stability analysis on networks

Perturbation near the
homogeneous fixed point

φi = φ
∗
+ δφi ψi = ψ

∗
+ δψi

Linearize the equations for
φi and ψi

Introduce the eigenvectors
of the Laplacian

∑
j

∆ijΦ
(α)
j = Λ(α)Φ

(α)
i

The eigenvalues Λ(α) are real
and negative.

The set of eigenvectors defines
a basis on which we can expand
the perturbation.

δφi = ∑
Ω
α=1 cαeλατΦ

(α)
i

δψi = ∑
Ω
α=1 cαβαeλατΦ

(α)
i

Inserting in the linearized
equation one gets a dispersion
relation for λα versus Λ(α),
which controls the instability.
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Dispersion relation for the Brusselator model

0 1 2 3 4

-Λ(α)
-10

-5

0

λ 
α

The dispersion relation
is defined on the
discrete support of Ω
eigenvalues Λ(α).

The curve relative to the continuum case is recovered by
replacing Λ(α) with −k2.
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A segregation in activator/inhibitors rich/poor nodes is found as follows
the linear instability.
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The active role of topology: directed networks

Self-organized waves can develop instigated by the network topology.
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Communications
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From the linear stability analysis...

Λ(α)
= Λ

(α)
Re + iΛ(α)

Im

The modified Jacobian matrix:

Jα = J +DΛ(α)

yields the dispersion relation:

(λα)Re =
1

2
[(trJα)Re + γ]

where γ is a functions of Jα

Region of instability
The instability develops when
(λα)Re is positive, namely
when:

S2(Λ
(α)
Re ) [Λ

(α)
Im ]

2
≤ −S1(Λ

(α)
Re ),

where S1 and S2 are
polynomials of fourth and
second degree in Λ

(α)
Re
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The active role of topology
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Example1. Spatial autocatalytic model

Autocatalytic reaction

X j
s +X j

s+1

rs
Ð→ 2X j

s+1

Exchange with the bulk

X j
s

βs,out
Ð→ E j

E j βs,in
Ð→ X j

s

Migration between urns

X j
s +E j ′ αs

Ð→ X j ′
s +E j
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Transition associated to migration

T (nj
s − 1,nj ′

s + 1∣nj
s,n

j ′
s ) =

αs

zΩ

nj
s

N
(1 −

k
∑
m=1

nj ′
m

N
),

T (nj
s + 1,nj ′

s − 1∣nj
s,n

j ′
s ) =

αs

zΩ

nj ′
s

N
(1 −

k
∑
m=1

nj
m

N
)

where z is the number of nearest neighbors that each micro-cell has.
Use has been made of the condition:

k
∑
s=1

nj
s

N
+

nj
E

N
= 1,
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The master equation

Introduce n = (n1,n2, ...,nΩ) where nj = (nj
1,n

j
2, ...,n

j
k). Then:

dP(n, t)
dt

=
Ω

∑
j=1

T j
locP(n, t) +

Ω

∑
j=1

∑
j ′∈j

T jj ′
migP(n, t)

+
Ω

∑
j=1

T j
env P(n, t), (1)

where the three terms on the right-hand side refer to the local terms for
the chemical reactions, the migration of chemical species between the
micro-cells, and the interaction with the environment, respectively. The
notation j ′ ∈ j means that the cell j ′ is a nearest-neighbor of the cell j .
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The van Kampen expansion

In analogy with above we set:

nj
s

N
= φj

s +
1

√
N
ξj

s

At the leading order in 1√
N

we get:

d
dτ

φj
s =

r
Ω
(φj

s−1φ
j
s − φ

j
sφ

j
s+1) +

α

Ω
(∆φj

s(1 −∑
m
φj

m) + φj
s∑

m
∆φj

m)

+
βin

Ω
(1 −∑

m
φj

m) −
βout

Ω
φj

s

where ∆ is the discrete Laplacian operator ∆f j
s = (2/z)∑j ′∈j(f

j ′
s − f j

s).
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The next–to–leading order: Fokker Planck equation

∂Π

∂τ
= −∑

p

∂

∂ξp
[Ap(ξ)Π] +

1

2
∑
l,p

Blp
∂2Π

∂ξl∂ξp
,

where the matrix A can be re-written as

Ap(ξ) =∑
l

Mplξl .

To specify the Fokker-Planck equation we need to give the form of the
two (kΩ) × (kΩ) matrices M and B.
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The equivalent Langevin formulation

dξj
s

dτ
=∑

j ′,r
M jj ′

sr ξ
j ′
r + λ

j
s(τ),

where
⟨λj

s(τ)λ
j ′
r (τ

′
)⟩ = Bjj ′

srδ(τ − τ
′
).
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Going to Fourier space

dξk
s

dτ
=∑

r
Mk

srξ
k
r + λ

k
s(τ),

where

⟨λk
s(τ)λ

k′
r (τ ′)⟩ = Bk

sr Ωadδk+k′,0δ(τ − τ
′
),

and where k is the wavevector. Both Mk and Bk are simply k × k
matrices (recall that k is the number of chemical species) and the
analysis from now on is as in the non-spatial case.
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The matrix Mk

Mk
sr = M(NS)

sr +M(SP)
sr ∆k,

where the two matrices M(NS) and M(SP) are given by

M(NS)
ss = −β − γ

M(NS)
sr =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−ηφ∗ − β, if r = s + 1
ηφ∗ − β, if r = s − 1
−β, if ∣s − r ∣ > 1,

and M(SP)
ss = αs [1 + (1 − k)φ∗]

M(SP)
sr = αsφ

∗ if s ≠ r .

Fourier transform of the discrete Laplacian

∆k =
2

d

d
∑
γ=1

[cos(kγa) − 1] .
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The matrix Bk

Bk
sr = B(NS)

sr +B(SP)
sr ∆k,

where the two matrices M(NS) and M(SP) are given by

B(NS)
ss = ad

[β(1 − kφ∗) + γφ∗ + 2η (φ∗)2
] (2)

B(NS)
sr =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−adη (φ∗)2 , if r = s + 1

−adη (φ∗)2 , if r = s − 1
0 if ∣s − r ∣ > 1,

(3)

and

B(SP)
ss = −2adαsφ

∗
(1 − kφ∗) (4)

B(SP)
sr = 0 if s ≠ r . (5)
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Calculating the power spectrum of fluctuations

k
∑
r=1

(−iωδsr −Mk
sr) ξ̃

k
r (ω) = λ̃

k
s(ω),

Defining the matrix Φk
sr(ω) = (−iωδsr −Mk

sr):

ξ̃k
r (ω) =

k
∑
s=1

[Φk
(ω)]

−1

rs λ̃
k
s(ω).

and:

Ps(k, ω) ≡ ⟨∣ξk
s(ω)∣

2⟩ =

Ωad
k
∑
r=1

k
∑
u=1

[Φk
(ω)]

−1

sr Bk
ru [Φk †

(ω)]
−1

us .
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Analytical power spectrum species 1, αi ≠ 0

The homogeneous fixed point is stable: no deterministic patterns
Stochastic patterns (wave like) do exist!
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Numerical power spectrum species 1, αi ≠ 0

The homogeneous fixed point is stable: no deterministic patterns
Stochastic patterns (wave like) do exist!
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Summing up...

Autocatalytic reactions are presumably important
Stochastic (spatial/aspatial) model of autocatalytic cycles
Deterministic models predict homogeneous fixed points
Patterns (quasi cycles, waves) exist as seeded by finite size
effects.
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On the synchronization issue (highly speculative!)

Imagine that the vesicle containing the chemical species grows
because of the inclusion of successive membrane constituents

Suppose that the vesicle is filled by a discrete population of
chemical constituents, organized in a autocatalytic cycle.
The chemicals experience a first rapid evolution toward the
stationary state, where enhanced oscillations appear due to the
intrinsic finiteness.
Such oscillations might seed an instability which could resonate
with the innate ability of the container to divide, so initiating the
splitting process.
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In other words...

These oscillations could act as an effective switch by signaling to the
membrane that the genetic evolution had been virtually taken to
completion and that the fission could now occur, so ensuring that the
genetic material is passed on to the daughter protocells.
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Remark: discrete (network/lattice) support.

Linear Langevin equation
dξsi

dτ
=∑

r ,j
Msr ,ijξr ,j + ηsi(τ)

where < ηsi(τ)ηrj(τ
′) >= Bsr ,ijδττ ′

Generalized transform: expand along Φ
(α)
i

Transform

f̃α(ω) = ∫
∞

0
dt

Ω

∑
i=1

fi(t)Φ
(α)
i e−jωt

Inverse Transform

fi(t) =
1

2π ∫
∞

−∞
dω

Ω

∑
α=1

f̃α(ω)Φ
(α)
i ejωt
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Example 2. Pattern formation in Anabaena

Under nitrogen deprivation, Anabaena develops patterns
nitrogen-fixing cells.
Heterocysts are separated by nearly regular intervals of
photosynthetic vegetative cells.
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Nitrogen deprivation enhances
expression HetR.
HetR positively regulates its
own production.
HetR induces expression of
PatS in cells that can
potentially form heterocysts
(yellow).
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A PatS-derived peptide signal
is thought to diffuse to
neighbouring cells (grey
gradient).
At late stages (dashed arrow),
HetN is produced in
heterocysts (orange), and a
HetN-derived signal is
conveyed to neighbouring
cells (grey gradient), where it
inhibits HetR function and
heterocyst formation.
The dynamical variables of our
model are the activator HetR
and its inhibitors PatS and
HetN.
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Deterministic Turing patterns
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Deterministic Turing patterns
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Stochastic Turing patterns
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Accounting for cell duplication.

0 0.5 1 1.5 2
Time 104

0

50

100

N
um

be
r 

of
 c

el
ls

0.6

0.8

1

HetR

Lecture 4 – Spatially extended systems February 18, 2020 54 / 75



Example 3. Patterns seeded by stochastic finite size
effects

Adjacency matrix
Xi and Yi identify individual
elements of the two
species.
The index i stands for the
node to which the elements
belong.
Reactions are local.
Migration between adjacent
nodes is allowed.

M. Asllani, Phys Rev E (2012)
M. Asllani, Europ. Phys. J. B.(2013)
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Stochastic moves: the Brusselator

Reaction rules

Ei
a
→ Xi

Xi
b
→ Yi

2Xi +Yi
c
→ 3Xi

Xi
d
→ Ei

Diffusion between adjacent nodes

Xi +Ej
µ
→ Ei +Xj ,

Yi +Ej
δ
→ Ei +Yj .

ni → number of molecule X in node i
mi → number of molecule Y in node i
N → number of molecules which can be hosted in any node.
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On the technical details

Define the discrete concentrations n = (n1, ⋅ ⋅ ni , ⋅ ⋅ nΩ) and
m = (m1, ⋅ ⋅mi , ⋅ ⋅mΩ)

Write down the Master Equation that governs the dynamics of the
probability P(n,m, t)
Working under the linear noise approximation:

ni

N
= φi(t) +

ξi
√

N
,

mi

N
= ψi(t) +

ηi
√

N
,

where φi(t) and ψi(t) represent the continuous concentration.
Perform a perturbative (system size) expansion in the small
parameter 1/

√
N.
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Leading order (N−1/2) : mean-field equations

Lecture 4 – Spatially extended systems February 18, 2020 58 / 75



Leading order (N−1/2) : mean-field equations

Lecture 4 – Spatially extended systems February 18, 2020 59 / 75



Leading order (N−1/2) : mean-field equations
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Stochastic patterns
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The next–to–leading order (N−1)

Linear Langevin equation
dξsi

dτ
=∑

r ,j
Msr ,ijξr ,j + ηsi(τ)

where < ηsi(τ)ηrj(τ
′) >= Bsr ,ijδττ ′

Lecture 4 – Spatially extended systems February 18, 2020 62 / 75



Example 4. Excitatory-inhibitory neurons.

Label X and Y individual excitatory and inhibitory elements.

Birth-death scheme

∅
f [sx ]
Ð→ X ∅

f [sy ]
Ð→ Y

X
1
Ð→ ∅ Y

1
Ð→ ∅

where:

sx =−r (nY
V − 1

2
).

sy =r (nX
V − 1

2
).

r >0 is the only free parameter.
nX and nY identify the number
of elements of type X and Y .

Logic flow
a. Introduce Pn(t) to label

the probability for the
system to be in state
n = (nX ,nY ) at time t .

b. The dynamics of the
system is governed by a
master equation.

c. Perform a
Kramers-Moyal
expansion, 1/

√
V acting

as small parameter.
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Fluctuating hydrodynamic approximation

ẋ = −x + f [−r(y −
1

2
)] +

1
√

V
[x + f (−r(y −

1

2
))]

1/2

ηx

ẏ = −y + f [r(x −
1

2
)] +

1
√

V
[y + f (r(x −

1

2
))]

1/2

ηy

stochastic non linear equations.
multiplicative noise.
ηx and ηy are delta correlated Gaussian variables.

Deterministic limit, V →∞
The deterministic model admits a fixed point x∗ = y∗ = 1/2. The linear
stability analysis returns λ = −1 ± i r

4
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Fluctuations and quasi-cycles

Linear noise approximation

x(t)=x∗+V−1/2ξ1

y(t)=y∗+V−1/2ξ2

ξ̇i =∑j Jijξj+ηi with i = 1,2

where ηi(t) is a Gaussian noise
with < ηi(t)ηj(t ′) >=δijδ(t − t ′).

Power spectral density matrix

Pij(ω) =< ξ̃i(ω)ξ̃
∗
j (ω) >=

2

∑
l=1

2

∑
m=1

Φ−1
il (ω)δlm (Φ†)

−1

mj (ω)

where Φij =−Jij−iωδij
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Visualizing quasi-regular oscillations

Finite size corrections do matter: macroscopic order can emerge as
mediated by the microscopic disorder (inherent granularity and
stochasticity)
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Directed chain of neuromorphic units

xi

yi yi+1

xi+1

Birth-death scheme

∅
f [sxi ]
Ð→ Xi ∅

f [syi ]
Ð→ Yi

Xi
1
Ð→ ∅ Yi

1
Ð→ ∅

sxi =−r (
nYi
V − 1

2) +D (
nXi−1

V −
nXi
V ) −D (

nYi−1
V −

nYi
V ).

syi =r (
nXi
V − 1

2) +D (
nXi−1

V −
nXi
V ) −D (

nYi−1
V −

nYi
V ).

r >0 and D>0 are free parameters.
nXk and nYk identify the number of elements of type X and Y in
cell k .
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Deterministic limit

ẋi = −xi + f [−r (
nYi

V
−

1

2
) +D (

nXi−1

V
−

nXi

V
) −D (

nYi−1

V
−

nYi

V
)]

ẏi = −yi + f [r (
nXi

V
−

1

2
) +D (

nXi−1

V
−

nXi

V
) −D (

nYi−1

V
−

nYi

V
)]

Homogeneous fixed point:
x∗ = y∗ = 1/2 ∀i .

Jacobian and stability.

J =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E1 0 0 0 0
S2 E2 0 0 0
0 S3 E3 0 0
0 0 ⋱ ⋱ 0
0 0 0 SΩ EΩ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Ei are identical for i ≥ 2

λ1,2 = −1 ± i r
4

(λi)3,4 = −1 ±
√
− r

8(
r
2 −D)

i = 2, ...,Ω

Stable for D < r/2.
ω0 = r/4, ω1 =

√
r
8(

r
2 −D).
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Linear noise approximation: theory vs. simulations.

ω
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Act on D to select a frequency and amplify the signal along the chain.
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On the amplification process

Stochastic trajectories as seen on different nodes of the chain.
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Superposing the outcome

Time
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x
i
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The amplification proceeds steadily along the chain. Saturation is
attained when the fluctuations hit the boundaries.
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The amplification is exponential.

Nodes
5 10 15 20 25 30

σ
i /

 σ
1
 [

d
B

]
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Π is the
distribution of
fluctuations
σi is the
associated
standard deviation
on node i

Fokker-Planck equation

∂

∂τ
Π = −

2Ω

∑
i=1

∂

∂ζi
[(Jζ)iΠ] +

1

2

2Ω

∑
i=1

∂2

∂ζ2
i

Π
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The rate of exponential amplification in the (D,r) plane.
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The region of parameters that yields the sought amplification is
delimited by the white solid curves ( exact [right] and approximate

[left]).
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I. Tuning the frequency
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II. Detecting a small amplitude noisy signal

Deterministic + noisy external input on node 1.
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