
Lecture 3 – Impact of noise: the emergence of quasi
cycles.

February 20, 2020

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 1 / 69



Outline

1 Stochastic driven oscillations in ecology.
2 Predator-prey stochastic cycles.
3 Other examples and applications.
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The pioneering work by Bartlett, 50s
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Predator-prey cycles in ecology
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Simulations by Bartlett.
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Simulations by Bartlett.
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The theory of stochastic quasi-cycles, Mckane and
Newman 2004
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A. The theory of stochastic quasi-cycles, Mckane and
Newman 2004

The model

B +E
bÐ→ B +B

A
d1Ð→ E

B
d2Ð→ E

A +B
p1Ð→ A +A

A +B
p2Ð→ A +E

E stands for the vacancies or empty spaces.
A is the predator and B the prey.
n (resp. m) is the number of predators (resp. prey).
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The stochastic model 1

Transition rates

T (n − 1,m∣n,m) = d1
n
N

T (n,m + 1∣n,m) = 2b
m
N

(N − n −m)
N

T (n,m − 1∣n,m) = 2p2
n
N

m
N
+ d2

m
N

T (n + 1,m − 1∣n,m) = 2p1
n
N

m
N
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The stochastic model 2

Master equation

dP(n,m, t)
dt

= ∑
n′,m′

(T (n,m∣n′,m′)P(n′,m′, t) − T (n′,m′∣n,m)P(n,m, t))

dP(n,m, t)
dt

=

− T (n − 1,m∣n,m)P(n,m, t) + T (n,m∣n + 1,m)P(n + 1,m, t) +
− T (n,m + 1∣n,m)P(n,m, t) + T (n,m∣n,m − 1)P(n,m − 1, t) +
− T (n,m − 1∣n,m)P(n,m, t) + T (n,m∣n,m + 1)P(n,m + 1, t) +
− T (n + 1,m − 1∣n,m)P(n,m, t)
+ T (n,m∣n − 1,m + 1)P(n − 1,m + 1, t).
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The mean-field (deterministic) limit

Introduce the average population amount:

⟨n⟩ = ∑
n,m

nP(n,m, t)

⟨m⟩ = ∑
n,m

mP(n,m, t)

The left-hand-side of the ME can be manipulated as follows (τ = t/N):

∑
n,m

n
dP(n,m, t)

dt
= d

dt
∑
n,m

nP(n,m, t) = d
dt

⟨n⟩ = d
dτ

⟨n⟩
N
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The first two terms on the right-hand-side of the master equation can
be re-written as (after replacing n + 1→ n′ → n, in the second):

∑
n,m

− nT (n − 1,m∣n,m)P(n,m, t)

+ (n − 1)T (n − 1,m∣n,m)P(n,m, t) = −⟨T (n − 1,m∣n,m)⟩

Manipulating the other pairs in a similar fashion and organizing the
obtained terms yield:

d
dτ

⟨n⟩
N

= −d1
⟨n⟩
N

+ 2p1
⟨nm⟩
N2
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A similar procedure can be implemented to yield the following equation
for ⟨m⟩:

d
dτ

⟨m⟩
N

= (2b − d2)
⟨m⟩
N

− 2b
⟨m2⟩
N2

− 2(p1 + p2 + b)⟨mn⟩
N2

Introduce the mean field concentrations as:

φ = lim
N→∞

⟨n⟩
N

ψ = lim
N→∞

⟨m⟩
N
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By performing the limit for N →∞ in the above equation one gets:

φ̇ = (2p1ψ − d1)φ

ψ̇ = [(2b − d2) (1 − 2b
2b − d2

ψ) − 2 (p1 + p2 + b)φ]ψ

where use has been made of the following (exact in the N →∞ limit)
condition:

⟨m2⟩ → ⟨m⟩2

⟨mn⟩ → ⟨m⟩⟨n⟩
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The fixed points are:

(φ∗, ψ∗) = (2bp1 − bd1 − p1d2

2p1 (p1 + p2 + b) ,
d1

2p1
)

and the associated Jacobian matrix:

J = ( p1ψ − d1 p1φ
− (p1 + p2)ψ (b − d2) − (p1 + p2)φ

)
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The fixed points are:

(φ∗, ψ∗) = (2bp1 − bd1 − p1d2

2p1 (p1 + p2 + b) ,
d1

2p1
)

and thus:

J(φ∗,ψ∗) = ( 0 2p1φ
∗

−2 (p1 + p2 + b)ψ∗ −2bψ∗)
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The associated eigenvalues are:

λ1,2 =
−2bψ∗ ±

√
∆

2

∆ = (2bψ∗)2 − 16p1 (p1 + p2 + b)φ∗ψ∗

The real part is always negative (implying stability), while the complex
part is present if ∆ < 0.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 17 / 69



Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 18 / 69



Setting the stage for the system size expansion

.

ε±n f (n,m) = f (n ± 1,m)
ε±mf (n,m) = f (n,m ± 1)

dP(n,m, t)
dt

= [ (ε+n − 1)T (n − 1,m∣n,m) + (ε−m − 1)T (n,m + 1∣n,m) +

(ε+m − 1)T (n,m − 1∣n,m) + (ε−nε+m − 1)T (n + 1,m − 1∣n,m)]P(n,m, t)
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The ansatz

n
N

= φ(t) + ξ√
N

m
N

= ψ(t) + η√
N

1 Introduce the distribution of fluctuations Π(ξ, η, t)
2 Plug in the master equation the van Kampen ansatz and expand

in series of 1/
√

N.
3 Isolate the contributions at leading order (1/

√
N) .

4 Compute the next-to-leading terms (1/N).
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At the next to leading order....

The Fokker-Planck eq.

∂

∂τ
Π(z, τ) = −

2

∑
i=1

∂

∂zi
Ai(z)Π(z, τ) + 1

2

2

∑
i,j=1

∂2

∂zi∂zj
BijΠ(z, τ)

where z ≡ (z1,z2) = (ξ, η) and Ai(z) is the i-th component of the vector
A(z) = Mz where:

M = ( 0 2p1φ
∗

−2 (p1 + p2 + b)ψ∗ −2bψ∗) = J(φ∗,ψ∗)
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At the next to leading order....

The Fokker-Planck eq.

∂

∂τ
Π(z, τ) = −

2

∑
i=1

∂

∂zi
Ai(z)Π(z, τ) + 1

2

2

∑
i,j=1

∂2

∂zi∂zj
BijΠ(z, τ)

where z ≡ (z1,z2) = (ξ, η) and Ai(z) is the i-th component of the vector
A(z) = Mz. Moreover:

B =
⎛
⎝

2d1φ
∗ −d1φ

∗

−d1φ
∗ −2d1 (1 + p2

p1
)φ∗ + 2d2ψ

∗

⎞
⎠
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The Langevin equations

ξ̇ = M11ξ +M12η + λ1

η̇ = M21ξ +M22η + λ2

where Mij stands for the entries of matrix M and:

The Fokker-Planck eq.

⟨λi(τ)⟩ = 0 i , j = 1,2

⟨λi(τ)j(τ ′)⟩ = Bijδ(τ − τ ′)

and δ(⋅) is the Dirac delta.
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Going to Fourier space...

−iωξ̂ = M11ξ̂ +M12η̂ + λ̂1

−iωη̂ = M21ξ̂ +M22η̂ + λ̂2

Combining the two above equation yields:

ξ̂ [(iω +M11) −
M12M21

iω +M22
] = M12

iω +M22
λ̂2 − λ̂1
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A straightforward manipulation yields:

P(ω) ≡ ⟨∣ξ̂∣2⟩ = α + βω2

[(ω2 −Ω2)2 + Γ2ω2]

with:

α = B11M2
22 + 2B12M12∣M22∣ +B22M2

12

β = B11

Ω2 = M12∣M21∣
Γ = ∣M22∣
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Comparing theory and simulations.
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B. Circadian clocks (from the inaugural lecture).

A circadian clock is a biochemical oscillator which makes it possible for
the organism to adjust to the day-night cycle.

Key properties:
Endogenous rhythmicity when
stimuli are lacking.

Susceptibility to external
stimuli which prompt
synchronization.

Ability to adjust to temperature
variation.

Cianobacteria are among the simplest organisms to possess a
biological cyrcadian clock.
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Cyrcadian clocks in cianobacteria

Cianobacteria are unicellular or multicellular organisms. They play a
key role for life on Earth.

Produce and release oxygen in the atmosphere
Fix nitrogen.

Synechococcus el. Anabaena sp.

The core of the circadian clock in cyanobacteria is composed by three
proteins: KaiA, KaiB e KaiC.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 28 / 69



Cyrcadian clocks in cianobacteria

Cianobacteria are unicellular or multicellular organisms. They play a
key role for life on Earth.

Produce and release oxygen in the atmosphere

Fix nitrogen.

Synechococcus el. Anabaena sp.

The core of the circadian clock in cyanobacteria is composed by three
proteins: KaiA, KaiB e KaiC.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 28 / 69



Cyrcadian clocks in cianobacteria

Cianobacteria are unicellular or multicellular organisms. They play a
key role for life on Earth.

Produce and release oxygen in the atmosphere
Fix nitrogen.

Synechococcus el. Anabaena sp.

The core of the circadian clock in cyanobacteria is composed by three
proteins: KaiA, KaiB e KaiC.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 28 / 69



Cyrcadian clocks in cianobacteria

Cianobacteria are unicellular or multicellular organisms. They play a
key role for life on Earth.

Produce and release oxygen in the atmosphere
Fix nitrogen.

Synechococcus el.

Anabaena sp.

The core of the circadian clock in cyanobacteria is composed by three
proteins: KaiA, KaiB e KaiC.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 28 / 69



Cyrcadian clocks in cianobacteria

Cianobacteria are unicellular or multicellular organisms. They play a
key role for life on Earth.

Produce and release oxygen in the atmosphere
Fix nitrogen.

Synechococcus el. Anabaena sp.

The core of the circadian clock in cyanobacteria is composed by three
proteins: KaiA, KaiB e KaiC.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 28 / 69



Cyrcadian clocks in cianobacteria

Cianobacteria are unicellular or multicellular organisms. They play a
key role for life on Earth.

Produce and release oxygen in the atmosphere
Fix nitrogen.

Synechococcus el. Anabaena sp.

The core of the circadian clock in cyanobacteria is composed by three
proteins: KaiA, KaiB e KaiC.

Lecture 3 – Impact of noise: the emergence of quasi cycles.February 20, 2020 28 / 69



Modeling the dynamics – 1

KaiC phosphorylates on sites T and S. Phosphorylation modifies
the structure of the protein with the inclusion of a phosphate group
PO3−

4 .

The different configurations of KaiC are termed phosphoforms.

KaiA and KaiB interact with
KaiC following a ordered scheme
which drives regular oscillations in the
concentration amount
delle fosfoforme

T= T-KaiC, D= ST-KaiC, S= S-KaiC
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Modeling the dynamics – 2

phosphorylates on sites T and S. Phosphorylation modifies the
structure of the protein with the inclusion of a phosphate group
PO3−

4 .

The different configurations of KaiC are termed phosphoforms.

[Rust et al., Science,
2007]

kXY (φS) = k0
XY + kA

XY f (φS)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̇T =φUkUT +φDkDT −φT kTU −φT kTD

φ̇D =φT kTD +φSkSD −φDkDT −φDkDS

φ̇S =φUkUS +φDkDS −φSkSU −φSkSD
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4 .

The different configurations of KaiC are termed phosphoforms.

[Rust et al., Science,
2007]

kXY (φS) = k0
XY + kA

XY f (φS)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̇T =φUkUT +φDkDT −φT kTU −φT kTD

φ̇D =φT kTD +φSkSD −φDkDT −φDkDS

φ̇S =φUkUS +φDkDS −φSkSU −φSkSD

φU = [KaiC] − φT − φD − φS
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The idealized continuum limit

A linear stability analysis around the fixed point solution (φ∗T , φ∗D, φ∗S)
yields the following scenario

Parameter plane (γ, [KaiA]) Bifurcation diagram, φT .

4 6 8 10 12 14 16 18 20

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3
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Exploring different dynamical regimes

γ = 8, [KaiA] = 1.2

8 8.5 9 9.5 10

1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

23

24

25

26

27

28

29

30

31

In region I the concentration of the phosphoforms of KaiC converges
to a fixed point (absence of circadian cycles).
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Stochastic modeling

The system operates in a low copy number regime.

Endogenous noise as stemming from finite size corrections do
matter.

Model the stochastic dynamics of individual constituents: ni
stands for the number of element of species i = T,S,D

phosphorylation U
kUTÐÐ→ T , U

kUSÐÐ→ S

de-phosphorylation T
kTUÐÐ→ U, S

kSUÐÐ→ U

inter-conversion T
kTDÐÐ→ D, S

kSDÐÐ→ D

D
kDTÐÐ→ T , D

kDSÐÐ→ S
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D
kDTÐÐ→ T , D

kDSÐÐ→ S
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Master equation

The state of the system is photographed by n(t) = (nT ,nD,nS).

These are stochastic variables distributed as
P(n, t) ≡ P(nT ,nD,nS; t).
The evolution of P(n, t) is governed by a master equation of the
general form:

∂P(n, t)
∂t

= ∑
n′≠n

[T(n∣n′)P(n′, t) −T(n′∣n)P(n, t)]

Typical transition rates read:

(inter-conversion) T
kTDÐÐ→ D T(nT − 1,nD + 1∣n) = nT

N
kTD
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Master equation in its full complexity.

∂P(n, t)
∂t

= T(n∣nT − 1)P(nT − 1; t) −T(nT + 1∣n)P(n, t)+

+T(n∣nS − 1)P(nS − 1; t) −T(nS + 1∣n)P(n, t)+
+T(n∣nT + 1)P(nT + 1; t) −T(nT − 1∣n)P(n, t)+
+T(n∣nS + 1)P(nS + 1; t) −T(nS − 1∣n)P(n, t)+

+T(n∣nT + 1,nD − 1)P(nT + 1,nD − 1; t) −T(nT − 1,nD + 1∣n)P(n, t)+
+T(n∣nD − 1,nS + 1)P(nD − 1,nS + 1; t) −T(nD + 1,nS − 1∣n)P(n, t)+
+T(n∣nT − 1,nD + 1)P(nT − 1,nD + 1; t) −T(nT + 1,nD − 1∣n)P(n, t)+
+T(n∣nD + 1,nS − 1)P(nD + 1,nS − 1; t) −T(nD − 1,nS + 1∣n)P(n, t)
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: inside.

γ = 10

[KaiA] = 1.2
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: outiside.

γ = 8

[KaiA] = 1.2
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R. Arbel-Goren et al., (2020)
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Details on the analytical calculations.

Invoke the van Kampen machinery.

van Kampen anzatz:
ni(t)

N
= φi(t) +

ξi√
N

∀i ∈ {T, D, S}

Probability distribution of fluctuations:

Π(ξ, t) = P(φT (t) + ξT
√

N
, φD(t) + ξD

√

N
, φS(t) + ξS

√

N
; t)

Perturbative expansion in the small parameter 1
√

N
,

where N is the size of the system.
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van Kampen expansion

At the leading order of the expansion Ð→ one recovers the mean
field equations

At the next-to-leading order Ð→ one gets the Fokker-Planck per for
the probability distribution of the endogenous fluctuations Π(ξ, t)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̇T =φUkUT +φDkDT −φT kTU −φT kTD

φ̇D =φT kTD +φSkSD −φDkDT −φDkDS

φ̇S =φUkUS +φDkDS −φSkSU −φSkSD

∂Π(ξ, t)
∂τ

= −
3

∑
i=1

∂

∂ξi
[Ai(ξ)Π(ξ, τ)] + 1

2

3

∑
i,j=1

∂2

∂ξi∂ξj
[BijΠ(ξ, τ)]
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Fokker-Planck and Langevin equations

The microscopic dynamics of a stochastic system whose probability
distribution obeys to a Fokker-Planck is governed by a (set of)
Langevin equation(s):

dξi

dτ
=

3

∑
j=1

Jijξj + ηi i ∈ {T, D, S}

Going to Fourier space and computing the power spectrum of
fluctuations for the i-species yields:

Pii(ω) = ⟨∣ξ̃i(ω)∣
2⟩ = (Φ−1B(Φ†)−1)

ii
Φ = −iω1 − J
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Comparing with the experiments - Synechococcus el.

Fluorescence activity in
Synechococcus el.

[In collaboration with J. Stavans group
@Weizmann]

Power spectrum
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C. Autocatalytic oscillations.

Protocells
Protocells are hypothetical lifelike entities, capable of growing and
dividing, thus giving rise to offspring that are similar to their parents
but, due to the noise inherent in the process, not identical to them.

Protocells therefore possess
all the ingredients necessary
for Darwinian evolution, and
it is possible to imagine that
a population of initially very
simple protocells change in
time, acquiring more
sophisticated properties.

R. Serra (2010)
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Mimimal living entities must embodie three operational functionalities:

A metabolism that extracts usable energy form the environment
(open system)
Genes that chemically realize informational control of living
functionalities
Container that keeps them all together.

J. Szostak’s lab
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The container

Vesicles
Vesicles are small cell-like structure in which the membrane separating
the inner constituent and outer environment takes the form of a lipid
bilayer.

Living cells are essentially very complicated vesicles with the
membrane containing a mixture of different lipids, a cytoskeleton and
complex surface structures.
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Simple vesicles without any additional structure display many
fascinating properties when observed in the lab: their growth, their
shape and the fact that they divide...

This self-replication ability is especially interesting in the context of
models of protocells, the primordial life bricks.
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The vesicles self-organize
in a sealed compartment.

Different shapes with the
lowest bending energy
can be attained: prolate
and oblate ellipsoids,
dumb-bell, pear shapes
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The interior

While vesicles can possibly define the scaffold of prototypical cell
models, what to can one say about the internal constituents?

It is believed that autocatalytic reactions might have played a role in
producing complex molecules required for the origin of life.

A chemical reaction is called autocatalytic if one of the reaction
products is itself a catalyst for the chemical reaction. Clearly the
reaction will speed up as more catalyst is produced.
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Nested catalytic reactions yields more complex behavior, with some
reactions producing catalysts for other reactions.

The interior of the protocell might have been occupied by interacting
families of replicators, organized in autocatalytic cycles.

Autocatalytic reactions are robust and cooperative: they are a possible
solution of the Eigen paradox, i.e. the evolutionary drive to
self-destruction.
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The model (Togashi and Kaneko)

Chemical equations
Autocatalytic reaction

Xi +Xi+1
ri+1Ð→ 2Xi+1

with Xk+1 ≡ X1

Inward diffusion

E
αiÐ→ Xi

Outward diffusion

Xi
βiÐ→ E
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The model (Togashi and Kaneko)

Chemical equations
Autocatalytic reaction

Xi +Xi+1
ri+1Ð→ 2Xi+1

with Xk+1 ≡ X1

Inward diffusion

E
αiÐ→ Xi

Outward diffusion

Xi
βiÐ→ E

ni = number of molecules of type Xi

k
∑
i=1

ni + nE = N

nE = N −
k
∑
i=1

ni

n ≡ (n1, . . . ,nk)
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The Master equation

Denote with P(n, t) the probability of seeing the system in state n at
time t .

Under the Markov hypothesis the stochastic process obeys to the
following balance equation:

dP(n, t)
dt

= − ∑
n′≠n

T (n′∣n)P(n, t) + ∑
n′≠n

T (n∣n′)P(n′, t)

where T (n′∣n) stands for the transition rate from the initial state n to
the final state n′
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Transition rates follow from the chemical equations

Consider the reaction:

Xi +Xi+1
ri+1Ð→ 2Xi+1

The probability of extracting from the urn one individual of type Xi
is ni/N

The probability of exracting from the urn one individual of type
Xi+1 is ni+1/N
The probability that one individual of type Xi encounters one
individual of type Xi+1 is hence ni

N
ni+1
N

Finally the probability for the reaction to occur reads

ri+1
ni

N
ni+1

N
.
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Table of transition probabilities

Reaction Xi +Xi+1
ri+1Ð→ 2Xi+1

T (n1, . . . ,ni − 1,ni+1 + 1, . . . ,nk ∣n) = ri+1
ni

N
ni+1

N

Reaction E
αiÐ→ Xi

T (n1, . . . ,ni + 1, . . . ,nk ∣n) = αi
⎛
⎝

1 −
∑k

j=1 nj

N
⎞
⎠

Reaction Xi
βiÐ→ E

T (n1, . . . ,ni − 1, . . . ,nk ∣n) = βi
ni

N
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Step–operators

E±1
i f (n) = f (n1, . . . ,ni ± 1, . . . ,nk)

Master equation (ME)

d
dt

P(n, t) =
k
∑
i=1

(E iE−1
i+1 − 1)

× [T (n1, . . . ,ni − 1,ni+1 + 1, . . . ,nk ∣n)P(n, t)]

+
k
∑
i=1

(E−1
i − 1) [T (n1, . . . ,ni + 1, . . . ,nk ∣n)P(n, t)]

+
k
∑
i=1

(E i − 1) [T (n1, . . . ,ni − 1, . . . ,nk ∣n)P(n, t)]
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The Master equation is difficult to handle analytically. Two strategies
are possible:

Perturbative theory: approximate the Master equation with
dedicated machineries, e.g. the van Kampen system size
expansion.
Numerical simulations. Resort to stochastic simulations
simulations that enables one to solve exactly the stochastic
dynamics.
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The perturbative approach

The Van Kampen reads:
ni

N
= φi(t) +

1√
N
ξi

where:

φi(t) is the deterministic concentration
ξi is a stochastic variable which accounts for finite size fluctuations

The scaling factor 1/
√

N controls the amplitude of stochastic
fluctuations: for large, though finite system sizes it acts as a small
perturbative parameter.
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Expanding the left–hand side of the Master equation

New probability

P(n, t)→ Π(ξ, t)

d
dτ

P(n, t) = ∂

∂τ
Π(ξ, t) − 1√

N

k
∑
i=1

∂Π(ξ, t)
∂ξi

dφi

dτ

E±1
i = 1 ± 1√

N
∂

∂ξi
+ 1

2N
∂2

∂ξ2
i
+ . . .
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Expanding the right–hand side of Master equation

Terms of order N−1/2

k
∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri+1φiφi+1 [ ∂

∂ξi
− ∂

∂ξi+1

] −αi
⎛
⎜
⎝

1 −
k
∑
j=1

φj
⎞
⎟
⎠
∂

∂ξi
+ βiφi

∂

∂ξi

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Π(ξ, t)

Terms of order N−1 and involving first order derivatives

k
∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri+1φi

∂

∂ξi
ξi+1 + (ri+1φi+1 + βi)

∂

∂ξi
ξi − ri+1φi

∂

∂ξi+1

ξi+1 − ri+1φi+1
∂

∂ξi+1

ξi +αi

k
∑
j=1

∂

∂ξi
ξj

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Π(ξ, t)

Terms of order N−1 and involving second order derivatives

1

2

k
∑
i=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ri+1φiφi+1

⎡⎢⎢⎢⎢⎣
∂2

∂ξ2
i

− ∂2

∂ξ2
i+1

⎤⎥⎥⎥⎥⎦

2

+αi
⎛
⎜
⎝

1 −
k
∑
j=1

φj
⎞
⎟
⎠
∂2

∂ξ2
i

+ βiφi
∂2

∂ξ2
i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Π(ξ, t)
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The leading order

Collecting together terms involving 1/
√

N we get

Mean–field equations

dφi

dτ
= (riφi−1 − ri+1φi+1)φi + αi

⎛
⎝

1 −
k
∑
j=1

φj
⎞
⎠
− βiφi

If αi = α, βi = β and ri = r for all i = 1, . . .k

Equilibrium point

φ∗ = α

β + kα
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Deterministic vs. stochastic simulations

The deterministic solution converges to a fixed point, while the
stochastic solution displays self-sustained oscillations.
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Deterministic vs. stochastic simulations
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The next–to–leading order

Fokker Planck equation

∂Π

∂τ
= −∑

i

∂

∂ξi
(Ai(ξ)Π) + 1

2
∑
ij

Bij
∂2Π

∂ξi∂ξj

where

Ai(ξ) =
k
∑
j=1

Mijξj

and M and B are k × k matrices.
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Equivalent formulation of the Fokker Planck equation

Langevin equations

dξi

dτ
=

k
∑
j=1

Mijξj(τ) + ηi(τ)

where ηi is a Gaussian white noise with zero mean and

⟨ηi(τ)ηj(τ ′)⟩ = Bijδ(τ − τ ′)

Go to Fourier space
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Power spectrum

k
∑
j=1

(−iωδij −Mij) ξ̃j(ω) = η̃i(ω)

defining Φij(ω) = −iωδij −Mij

ξ̃i(ω) =
k
∑
j=1

Φ−1
ij (ω)η̃j(ω)

Power spectrum

Pi(ω) =∑
j
∑
k

Φ−1
ij (ω)Bjk(Φ†

ij)
−1(ω)
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Power spectrum for k = 4
λ0 = −β − 4α λ2 = −β
λ1 = −β − 2irφ∗ λ3 = λ∗1 ωc =

√
4r2 (φ∗)2 − β2 ≃ 4
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Power spectrum for k = 8

λ0 = −β − 8α λ4 = −β
λ1 = −β −

√
2irφ∗ λ7 = λ∗1

λ2 = −β − 2irφ∗ λ6 = λ∗2
λ3 = −β −

√
2irφ∗ λ5 = λ∗3 ωc1 =

¿
ÁÁÀ 2r2α2

(β + 8α)2
− β2

≃ 31.2

ωc2 =
¿
ÁÁÀ 4r2α2

(β + 8α)2
− β2

≃ 44.1
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