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Brownian motion

Small pollen grains in water
move continuously and
randomly. Why?
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Water molecules hit pollen grains
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Einstein explanation (1905): the birth of stochastic
modeling of natural phenomena.

1 The motion is caused by the impact
on the pollen grain of incessantly
moving molecules of liquid.

2 The motion of these molecules is
so complicated that the effects
produced can be solely accessed
probabilistically.

3 Assume exceedingly frequent
statistically independent impacts

Lecture 1 – Stochastic processes February 7, 2020 5 / 51



Lecture 1 – Stochastic processes February 7, 2020 6 / 51



An extended excerpt of Einstein’s paper (Gardiner’s
translation).

”It must clearly be assumed that each individual particle executes a
motion which is independent of the motion of all other particles; it will
also be considered that the movements of one and the same particle in the
different time intervals are independent processes, as long as these time
intervals are not chosen too small.”

”We introduce a time interval τ into consideration, which is very small
compared to the observable time intervals, but nevertheless so large that
in two successive time intervals τ , the motion executed by the particle can
be thought of as events which are independent of each other. ”
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Now let there be a total of n particles suspended in a liquid. In a time
interval τ , the x-coordinate of the individual particle will increase of an
amount ∆, where for each particle ∆ has a different (positive or negative)
value. There will be a certain frequency law for ∆; the number dn of the
particles which experience a shift which is between ∆ and ∆ + d∆ will be
expressible by an equation of the form:

dn = nφ(∆)d∆

where:

1
∫∞
−∞ φ(∆)d∆ = 1

2 φ is different from zero only for very small values of ∆.

3 φ is symmetric: φ(∆) = φ(−∆).

Lecture 1 – Stochastic processes February 7, 2020 8 / 51



Let ν = f (x , t) be the number of particles per unit volume. We compute
the distribution of particles at the time t + τ from the distribution at time
t. From the definition of the function φ(∆) it is easy to find the number of
particles which at time t + τ are found between two planes perpendicular
to the x-axis and passing through points x and x + dx . One obtains:

f (x , t + τ)dx = dx

∫ ∞
−∞

f (x + ∆, t)φ(∆)d∆ (1)

But since τ is small, f (x , t + τ) ' f (x , τ) + τ ∂f
∂t . Furthermore:

f (x + ∆, t) ' f (x , t) + ∆
∂f (x , t)

∂x
+

∆2

2

∂2f (x , t)

∂2x

We can use this series under the integral, because only small values of ∆
contribute to this equation. We obtain:

f +
∂f

∂t
τ = f

∫ ∞
−∞

φ(∆)d∆ +
∂f

∂x

∫ ∞
−∞

∆φ(∆)d∆ +
∂2f

∂2x

∫ ∞
−∞

∆2

2
φ(∆)d∆
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Because φ(∆) = φ(−∆), then
∫∞
−∞∆φ(∆) = 0. Recalling that∫∞

−∞ φ(∆)d∆ = 1 and setting:

1

τ

∫ ∞
−∞

∆2

2
φ(∆)d∆ ≡ D

yields:

∂f

∂t
= D

∂2f

∂2x

f (x , t) =
n√

4πD

−x2/4Dt

√
t
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A lot of smart ideas

1 The Chapman-Kolmogorov equation occurs as Einstein’s equation (1).
It states that the probability of the particle being at position x at time
t + τ is given by the sum of the probability of all possible ”jumps” ∆
from position x + ∆, multiplied by the probability of being at x + ∆ at
time t. Independence of the jumps on the previous history of the
particles (Markov hypothesis).

2 The Fokker-Planck equation. The diffusion equation is a very special
case of the so called Fokker-Planck equation which is encountered in a
large class of interesting stochastic processes with continuous sample
path.

3 The Kramers-Moyal and analogous expansion are similar to that used
by Einstein to go from the Chapman-Kolmogorov equation to the
diffusion equation.
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Langevin: looking at individual trajectories.

From statistical mechanics, the mean kinetic energy of the Brownian
particles is 〈12mv2〉 = 1

2κBT where T is the absolute temperature and κB
the Boltzmann ’s constant. The forces acting on the particle should be:

1 A viscous drag: this is −6πηadx/dt, η being the viscosity and a the
diameter of the particles, assumed spherical.

2 A fluctuating force X which represents the impacts of the molecules
of the liquid on the Brownian particle. It should be positive and
negative with equal probability.

Hence:

m
d2x

dt2
= −6πηa

dx

dt
+ X
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After multiplying by x , the above equation can be cast in the form:

m

2

d2

dt2
(
x2
)
−mv2 = −3πηa

d
(
x2
)

dt
+ Xx

and averaging over a large set of particles yields an equation for 〈x2〉:

m

2

d2〈x2〉
dt2

+ 3πηa
d〈x2〉
dt

= κBT

where 〈Xx〉 = 0 because ”of the irregularity of quantity X” (Langevin).
One then finds:

d〈x2〉
dt

= κBT/(3πηa) + C exp (−6πηat/m)

Langevin estimated that the time constant of the exponential is of the
order 10−8 s. Thus one can neglect the exponential term to get:

〈x2〉 − 〈x2〉0 = [κBT/ (3πηa)] t D = κBT/ (6πηa)
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1 The Einstein approach returns an equation for the evolution of the
probability density function (f → P) of seeing the Brownian particle
in position x at time t.

2 The Langevin approach returns a stochastic differential equation for
accessing the trajectory of individual Brownian particles.

3 Averaging over independent trajectories returns the probability density
function P.

4 Determination of Avogadro constant by Perrin (atomic hypothesis):
NA = R/κB .
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Stochastic processes

Suppose that a system has properties which can be described in terms of a
single stochastic variable Y , for example, the number of molecules in a
given volume of air, the number of people in a queue,..

Then we introduce the following quantities:

p(y , t) ≡ (the probability density that the stochastic

variable Y has value y at time t)

The expectation value of Y at time t is

〈Y (t)〉 =

∫
all y

dy y p(y , t)

Similarly

〈Y n(t)〉 =

∫
all y

dy yn p(y , t) , 〈f (Y (t))〉 =

∫
all y

dy f (y) p(y , t) ,
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p(y2, t2; y1, t1) ≡ (the joint probability density that the

stochastic variable Y has value y1 at time

t1 and y2 at time t2)

So, for example, the expectation value of Y (t2)Y (t1) is

〈Y (t2)Y (t1)〉 =

∫
dy2 dy1 y2y1 p(y2, t2; y1, t1)

If the value of Y at time t2 is completely independent of the value of Y at
time t1, then

p(y2, t2; y1, t1) = p(y2, t2)p(y1, t1) ,
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and we find that

〈Y (t2)Y (t1)〉 =

∫
dy2 y2 p(y2, t2)

∫
dy1 y1 p(y1, t1) = 〈Y (t2)〉〈Y (t1)〉

⇒ 〈Y (t2)Y (t1)〉 − 〈Y (t2)〉〈Y (t1)〉

is a measure of the correlation between Y at time t2 and time t1

p(yn, tn; . . . ; y2, t2; y1, t1) ≡ (the joint probability density that the

stochastic variable Y has value y1 at

time t1, y2 at time t2, . . . , yn at time tn)
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Marginal and conditional probabilities may be defined as follows:

∫
dyn . . . dym+1 p(yn, tn; . . . ; y2, t2; y1, t1)

= p(ym, tm; . . . ; y2, t2; y1, t1) [marginal pdf ]

p(yn, tn; . . . ; ym+1, tm+1|ym, tm; . . . ; y1, t1)

=
p(yn, tn; . . . ; y1, t1)

p(ym, tm; . . . ; y1, t1)
[conditional pdf ]
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Define two special types of stochastic process.

A process is called stationary when all the probability densities depend
on the time differences alone:

p(yn, tn + τ ; . . . ; y2, t2 + τ ; y1, t1 + τ)

= p(yn, tn; . . . ; y2, t2; y1, t1) for all n and τ

So, for example, taking τ = −t1, then

p(y1, t1 − t1) = p(y1, t1) ⇒ p(y1, t1) = p(y1, 0) ≡ p(y1)

is time-independent
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Similarly by taking different values for τ ,

p(y2, t2; y1, t1) = p(y2, t2 − t1; y1, 0) = p(y2, 0; y1, t1 − t2) ,

and so depends only on the time difference

But

〈Y (t2)Y (t1)〉 =

∫
dy2 dy1 y2y1 p(y2, t2; y1, t1)

is symmetric under t1 ↔ t2 and so 〈Y (t2)Y (t1)〉 depends only on |t2 − t1|
when the process is stationary

A process is called Gaussian if all the cumulants beyond the second
vanish

⇒ A Gaussian process is fully specified by 〈〈Y (t2)Y (t1)〉〉 and 〈Y (t1)〉, or
equivalently by 〈Y (t2)Y (t1)〉 and 〈Y (t1)〉
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Markov processes

A process is Markov if p(yk+1, tk+1|yk , tk ; . . . ; y1, t1) depends on the state
Y (tk) = yk , but not on Y (tk−1) = yk−1, . . . ,Y (t1) = y1

i.e., p(yk+1, tk+1|yk , tk ; . . . ; y1, t1) = p(yk+1, tk+1|yk , tk) ∀k

So the conditional pdfs are affected only by the state of the system at a
given time, and not by the state of the system at times prior to this.

(a) p(yn, tn; . . . ; y1, t1)

= p(yn, tn|yn−1, tn−1; . . . ; y1, t1)p(yn−1, tn−1; . . . ; y1, t1)

= p(yn, tn|yn−1, tn−1)p(yn−1, tn−1|yn−2, tn−2; . . . ; y1, t1)

×p(yn−2, tn−2; . . . ; y1, t1)

= . . . =
n−1∏
i=1

p(yi+1, ti+1|yi , ti )p(y1, t1)
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(b) p(yk+`, tk+`; . . . ; yk+1, tk+1|yk , tk ; . . . ; y1, t1)

=

∏k+`−1
i=1 p(yi+1, ti+1|yi , ti )p(y1, t1)∏k−1
i=1 p(yi+1, ti+1|yi , ti )p(y1, t1)

=
k+`−1∏
i=k

p(yi+1, ti+1|yi , ti )

(a) tells us that for Markov processes all joint pdfs can be written down in
terms of the functions p(y ′, t ′|y , t) and p(y , t) and (b) tells us that for
Markov processes all conditional pdfs can be written down in terms of
p(y ′, t ′|y , t)

Using (a) and (b) we can show that the hierarchy of pdfs related through
the definition of marginal and conditional pdfs collapse down to just two
relations between the functions p(y ′, t ′|y , t) and p(y , t)

These are:
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(i) p(y2, t2) =

∫
dy1 p(y2, t2|y1, t1)p(y1, t1)

Proof p(y2, t2) =

∫
dy1 p(y2, t2; y1, t1)

=

∫
dy1 p(y2, t2|y1, t1)p(y1, t1)

In fact we have not used the Markov assumption to derive the, rather
obvious, result above

(ii) p(y3, t3|y1, t1) =

∫
dy2 p(y3, t3|y2, t2)p(y2, t2|y1, t1)

Proof p(y3, t3; y2, t2; y1, t1)

= p(y3, t3|y2, t2)p(y2, t2|y1, t1)p(y1, t1)
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Integrating over y2 leads to

p(y3, t3; y1, t1) =

{∫
dy2 p(y3, t3|y2, t2)p(y2, t2|y1, t1)

}
p(y1, t1)

But p(y3, t3; y1, t1) = p(y3, t3|y1, t1)p(y1, t1) and the result is proved

The result (ii) is called the Chapman-Kolmogorov (CK) equation. It is the
starting point for the study of Markov processes

For a Markov process the functions p(y ′, t ′|y , t) and p(y , t) are not
arbitrary; they must satisfy conditions (i) and (ii)

Conversely, any two non-negative functions p(y ′, t ′|y , t) and p(y , t) that
obey (i) and (ii) uniquely define a Markov process

The CK equation tells us that we can break up the probability of transition
from state y1 at time t1 to state y3 at time t3 into a process involving two
successive steps which are statistically independent; the probability of the
transition from y2 to y3 is not affected by the fact that it was preceded by
a transition from y1 to y2
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Markov chains

In this case the stochastic variables are discrete and will be labelled by an
integer n

Then the two equations (i) and (ii) governing Markov processes take the
form

p(n2, t2) =
∑
n1

p(n2, t2|n1, t1)p(n1, t1)

p(n3, t3|n1, t1) =
∑
n2

p(n3, t3|n2, t2)p(n2, t2|n1, t1) t1 < t2 < t3

In addition, we take time to be discrete, so that t also takes on integer
values t = 0, 1, . . .

If time is discrete, the Chapman-Kolmogorov (CK) equation tells us that
the conditional probability at any time, p(n, t ′|m, t) ≡ p(n, t + `|m, t)
(` = 2, 3, . . .), can be found if the function p(n, t + 1|m, t) is known for all
t.
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This follows because

p(n, t + 2|m, t) =
∑
n′

p(n, t + 2|n′, t + 1)p(n′, t + 1|m, t) ,

p(n, t + 3|m, t) =
∑
n′

p(n, t + 3|n′, t + 1)p(n′, t + 1|m, t) , etc

This fundamental conditional pdf can be thought of as a matrix:

Qnm(t) ≡ p(n, t + 1|m, t)

Such pdfs are called transition probabilities since they give the probability
of the system making a transition from state m to state n

If we also write p(n, t) as Pn(t), then the first equation for Markov
processes can be written as

Pn(t + 1) =
∑
m

Qnm(t)Pm(t)
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Urn model: balls of various colours in a pot

Suppose two pots, A and B, each contain 3 red balls and 2 white balls
between them so that A always has 2 balls and B always has 3 balls.
Note: this is Exercise 5.1. of Reichl

What are the states of the system?

What are the transition probabilities?

To find these have to define the rules that govern the model.
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Dynamical rule: at each time step pick a ball out of pot A at random and
one out of pot B at random, and interchange them

• Start from state 1. It can only go to state 2.

⇒ Q11 = 0 , Q21 = 1 , Q31 = 0

• Start from state 2.

To go to n = 1 : probability =
1

2
× 1

3
=

1

6

To go to n = 3 : probability =
1

2
× 2

3
=

1

3

To go to n = 2 : probability = 1− 1

6
− 1

3
=

1

2

n = 2 directly : probability =
1

2
× 1

3
+

1

2
× 2

3
=

1

2

⇒ Q12 =
1

6
, Q22 =

1

2
, Q32 =

1

3
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• Start from state 3.

To go to n = 1 : probability = 0

To go to n = 2 : probability = 1× 2

3
=

2

3

To go to n = 3 : probability = 1× 1

3
=

1

3

⇒ Q13 = 0 , Q23 =
2

3
, Q33 =

1

3
So the transition probability matrix is:

Q =

0 1
6 0

1 1
2

2
3

0 1
3

1
3


Notice that each of the columns add up to 1. Matrices which have this
property and in addition have entries which are all non-negative, are called
stochastic matrices.
So suppose we are given P(0) — say that the system starts in state 2 at
t = 0. This means that
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P(0) =

0
1
0


Then

P(1) = QP(0) ; P(2) = QP(1) = Q2P(0) ; . . . ; P(3) = Q3P(0) . . .

Continuing in this way we arrive at the general result

P(t) = QtP(0)

We will discuss later how to study this for general t, but for the moment
let’s just look at what happens after one and two time steps in this
example
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Since

Q2 =

1
6

1
12

1
9

1
2

23
36

20
36

1
3

10
36

1
3

 ,

we find that if we start in state 2, then after one step

P(1) =

0 1
6 0

1 1
2

2
3

0 1
3

1
3

0
1
0

 =

1
6
1
2
1
3


and after two steps

P(2) =

1
6

1
12

1
9

1
2

23
36

20
36

1
3

10
36

1
3

0
1
0

 =

 1
12
23
36
10
36


So, for example, the probability of being in state 2 having started in state
2 two time steps earlier, is 23/36
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General solution of a Markov chain

Let us return to the general equation for Markov chains, when the
transition probability is time-independent:

P(t) = QtP(0)

How do we solve it for general t?

Answer: We need to find the eigenvalues and eigenvectors of the matrix Q.

We first need to have an aside on the eigenvalues and eigenvectors of a
(typically non-symmetric) matrix.

Let us look at the specific example:

M =

(
−1 2
−3 4

)
,

which clearly is not a stochastic matrix (its columns don’t sum to unity,
and it has negative entries).
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So, we compute its eigenvalues in the usual way; subtract λ from the
diagonals, and set the determinant to zero;∣∣∣∣ −1− λ 2

−3 4− λ

∣∣∣∣ = 0 ⇒ λ2 − 3λ+ 2 = 0.

Thus, the characteristic equation (the one on the right, above) has
solutions

λ(1) = 1, λ(2) = 2.

We find what we will now call the right eigenvectors the way we
“normally” find eigenvectors. That is, by solving(

−1 2
−3 4

)(
x
y

)
= λ

(
x
y

)
for each of the cases λ = 1, λ = 2 separately

We shall denote the right eigenvector as ψ(i), corresponding to eigenvalue
λ(i).
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We find that

λ(1) = 1 ⇒ ψ(1) =

(
1
1

)
,

and

λ(2) = 2 ⇒ ψ(2) =

(
2
3

)
.

Now, to find the left eigenvectors χ(i), which correspond to eigenvector
λ(i), we solve

(x y)

(
−1 2
−3 4

)
= λ(i)(x y),

for each λ(i). So, for λ(1) = 1, we see that

−x − 3y = x ⇒ left eigenvector is (3 − 2),

and that for λ(2) = 2, we see that

x = −y ⇒ left eigenvector is (1 − 1).
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Note that these eigenvectors are rows, rather than columns. We therefore
denote them as (χ(i))T . That is,

(χ(1))T = (3 − 2) ⇔ χ(1) =

(
3
−2

)
(χ(2))T = (1 − 1) ⇔ χ(2) =

(
1
−1

)
.

Now, by way of convenient notation, we denote right eigenvectors as kets
|ψ(i)〉, and left eigenvectors as bras 〈χ(i)|. Thus, notice the orthogonality
of the two sets of eigenvectors:

〈χ(1)|ψ(2)〉 = 6− 6 = 0, 〈χ(2)|ψ(1)〉 = 1− 1 = 0.

They can also be normalised:

〈χ(1)|ψ(1)〉 = 3− 2 = 1,

so this set is already normalised, and

〈χ(2)|ψ(2)〉 = 2− 3 = −1,

so we simply multiply χ(2) by −1.
Lecture 1 – Stochastic processes February 7, 2020 35 / 51



Summary

ψ(1) =

(
1
1

)
, ψ(2) =

(
2
3

)
χ(1) =

(
3
−2

)
, χ(2) =

(
−1
1

)
(χ(1))T = (3 − 2) , (χ(2))T = (−1 1)

Warning: M is not a stochastic matrix, so do not read anything into the
nature of the eigenvalues or eigenvectors. In particular, the fact that one
of the eigenvalues happens to be 1 and one of the eigenvectors (1 1)T

will not be true for another choice of matrix.

With this, let us return to the study of Markov chains, and stochastic
matrices (whose entries are all non-negative and where the entries in any
one column add up to unity). We saw this latter property in the urn model
example, but this is obviously true in general, since “something must
happen”.
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Mathematically, this idea that some event must happen can be formulated
by using the definition of Q. We see that it corresponds to∑

n

Qnm =
∑
n

P(n, t + 1|m, t) = 1,

so that the probability that the state transitions from state m at time t, to
all other states n at time t + 1, is unity.

Properties of stochastic matrices

If Q1 and Q2 are stochastic matrices, so is Q1Q2.

If Q is a stochastic matrix, then so is any power of that matrix, Qt .

In our brief example, we saw that an eigenvalue λ = 1 appeared. This
is a general property of stochastic matrices. All stochastic matrices
have one eigenvalue which is unity. Corresponding to that eigenvalue,
the left eigenvector is “unit”. That is,

λ(1) = 1, (χ(1))T = (1 1 . . . 1).
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This follows just by writing the condition
∑

n Qnm = 1 as∑
n

χ
(1)
n Qnm = 1.χ

(1)
m ,

where χ
(1)
n = 1 for all n. Note that our example during the brief aside, was

not a stochastic matrix, and therefore this left eigenvector did not appear.

Suppose that Q is time-independent. Then at large times P(t) may
approach a time-independent value called Pst — the stationary state.
In that case P(t + 1) and P(t) both equal Pst , so that

P(t + 1) = QP(t),

becomes
Pst = QPst ,

which is merely an eigenvalue equation, corresponding to eigenvalue
1. That is,

QPst = 1.Pst .

so that Pst
n is a right-eigenvector of Q with eigenvalue 1
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Note that

(1 1 . . . 1)

 Pst
1

Pst
2
...

 =
∑
n

Pst
n = 1,

so that the correct normalisation of Pst implies that (χ(1))Tψ(1) = 1 and
visa-versa.

All eigenvalues of a stochastic matrix have modulus ≤ 1,

|λ(i)| ≤ 1, ∀i .

(see Reichl p236 for a proof).

Finally, if the matrix is symmetric, QT = Q, then the left- and
right-eigenvectors are the same.

Example 3 red balls and 2 white balls in urns A and B (continued)

Let us compute the right & left eigenvectors for our previous transition
matrix for the urn model:
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Q =

 0 1/6 0
1 1/2 2/3
0 1/3 1/3

 .

We compute eigenvalues via∣∣∣∣∣∣
−λ 1/6 0
1 1/2− λ 2/3
0 1/3 1/3− λ

∣∣∣∣∣∣ = 0,

which results in the characteristic equation

λ3 − 5
6λ

2 − 2
9λ+ 1

18 = 0.

To solve this cubic, we first note that we know that one factor is λ = 1 (it
being a stochastic matrix implies that there is one unit eigenvalue). Thus,
we factorise, correctly choosing the λ3 and λ0 coefficients:

(λ− 1)(λ2 + aλ− 1
18) = 0.

If we expand this out, and compare the powers of λ2 with the original
characteristic equation, we find that a = 1

6 .
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Therefore,
(λ− 1)(λ2 + 1

6λ−
1
18) = 0,

which further factorises to

(λ− 1)(λ+ 1
3)(λ− 1

6) = 0.

So the three eigenvalues are

λ(1) = 1, λ(2) = −1
3 , λ(3) = 1

6 .

Now, corresponding to λ(1) = 1, we know that the left eigenvector is just

(χ(1))T = (1 1 1), λ(1) = 1.

So, to find the corresponding right eigenvector, ψ(1), we solve in the usual
way:  0 1/6 0

1 1/2 2/3
0 1/3 1/3

 x
y
z

 = 1.

 x
y
z

 ,
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to give

ψ(1) =

 1
6
3

 .

This is the stationary state; but, to correctly normalise it so that
〈χ(1)|ψ(1)〉 = 1, we note that

(1 1 1)

 1
6
3

 = 10; ψ(1) = Pst =

 1/10
3/5

3/10

 .

And thus, we have found the stationary state. The other eigenvectors are
fairly easily found to be

λ(2) = −1
3 ⇒ ψ(2) =

 1/6
−1/3
1/6

 , χ(2) =

 3
−1
1


and
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λ(3) = 1
6 ⇒ ψ(3) =

 −4/15
−4/15
8/15

 , χ(3) =

 −3/2
−1/4

1

 .

Remember that we get the χ(i) in the form of a row vector, (χ(i))T . To
continue, we make the identification

ψ(i) 7−→ |ψ(i)〉, (χ(i))T 7−→ 〈χ(i)|,

and so, using this notation, we see orthonormality:

〈χ(1)|ψ(3)〉 = 0.

Also note, as ψ(2),(3) are orthogonal to χ(1), their entries must sum to zero
(which they do).

Lecture 1 – Stochastic processes February 7, 2020 43 / 51



General theory of eigenvectors of Q

We now prove various relations, in a very similar fashion to quantum
mechanics. This theory does not rely on the matrix being stochastic; it is
true for any matrix.

So suppose Q is a (time-independent) M ×M matrix. It will have M
eigenvalues in general. If Q is symmetric the eigenvalues will be real,
otherwise they may be complex

Corresponding to the ith eigenvalue λ(i), there will be a right-eigenvector
(or eigenstate) |ψ(i)〉 and a left-eigenvector (or eigenstate) 〈χ(i)| such that

Q|ψ(i)〉 = λ(i)|ψ(i)〉 and 〈χ(i)|Q = λ(i)〈χ(i)|

Orthogonality

Forming the product of the above eigenvalue equations, with a bra-state
on the first, and a ket-state on the second, we have that

〈χ(j)|Q|ψ(i)〉 = λ(i)〈χ(j)|ψ(i)〉, 〈χ(i)|Q|ψ(j)〉 = λ(i)〈χ(i)|ψ(j)〉.
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Interchanging indices in the second expression gives

〈χ(j)|Q|ψ(i)〉 = λ(j)〈χ(j)|ψ(i)〉.

Subtracting the two expressions now gives

0 = (λ(i) − λ(j))〈χ(j)|ψ(i)〉.

So, if λ(i) 6= λ(j), then this simply reads

〈χ(j)|ψ(i)〉 = 0, λ(i) 6= λ(j).

If we have chosen to normalise the eigenvectors, then

〈χ(j)|ψ(i)〉 = δij , (2)

which is the statement of orthonormality: right and left eigenvectors
corresponding to different eigenvalues are orthonormal to each other.
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Completeness

Since {|ψ(i)〉} are a complete set of states, we can expand any probability
vector in terms of them:

|P〉 =
M∑
i=1

αi |ψ(i)〉.

So, forming the product of this with a bra-state gives

〈χ(j)|P〉 =
M∑
i=1

αi 〈χ(j)|ψ(i)〉,

which, by our orthonormality statement, is simply

〈χ(j)|P〉 =
M∑
i=1

αi 〈χ(j)|ψ(i)〉 =
M∑
i=1

αiδij = αj .

This identifies the αi :
αi = 〈χ(i)|P〉.
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Then, using this in our original expansion,

|P〉 =
M∑
i=1

|ψ(i)〉αi =

{
M∑
i=1

|ψi 〉〈χ(i)|

}
|P〉.

But this is true for any |P〉, so that

M∑
i=1

|ψ(i)〉〈χ(i)| = I , (3)

where I is the M ×M identity matrix.

We note the following important relation which follows by multiplying (3)
by Q:

Q =
M∑
i=1

Q|ψ(i)〉〈χ(i)|

=
M∑
i=1

λ(i)|ψ(i)〉〈χ(i)|
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How does all this help us to solve P(t) = QtP(0)?

Well, if Q has eigenvalues λ(i) and eigenvectors 〈χ(i)| and |ψ(i)〉, then Qt

has eigenvalues (λ(i))t and also has eigenvectors 〈χ(i)| and |ψ(i)〉

This is easy to prove by induction: assume QN has eigenvalues (λ(i))N and
eigenvectors 〈χ(i)| and |ψ(i)〉. Then QN+1|ψ(i)〉 = Q.QN |ψ(i)〉 which
equals Q(λ(i))N |ψ(i)〉 = (λ(i))N+1|ψ(i)〉. So if it is true for N, it is true for
N + 1. Since it is true for N = 1, it is true for all N. A similar proof holds
for the left eigenvector.

Now just as we obtained an important relation above by multiplying (3) by
Q, we can obtain a generalisation by multiplying (3) by Qt :

Qt =
M∑
i=1

Qt |ψ(i)〉〈χ(i)|

=
M∑
i=1

(λ(i))t |ψ(i)〉〈χ(i)| (4)
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Equation (4) is a key result, because it shows that if we can find the
eigenvalues and eigenvectors of Q, we can calculate Qt .

Notice that this implies that

P(t) = QtP(0) =
M∑
i=1

(λ(i))t |ψ(i)〉〈χ(i)|P(0)〉.

All the quantities on the right-hand side can be found from a knowledge of
Q.

Example The urn model, Exercise 5.1 from Reichl, continued.

Let us return to the urn models matrix & eigenvectors, to compute an
arbitrary power of the matrix.
For λ(1) = 1, we see that

|ψ(1)〉〈χ(1)| =

 1/10
3/5

3/10

 (1 1 1) =

 1/10 1/10 1/10
3/5 3/5 3/5

3/10 3/10 3/10

 ≡ Q1.
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For λ(2) = −1/3, we see that

|ψ(2)〉〈χ(2)| =

 1/6
−1/3
1/6

 (3 − 1 1) =

 1/2 −1/6 1/6
−1 1/3 −1/3
1/2 −1/6 1/6

 ≡ Q2.

And finally, for λ(3) = 1/6, we see that

|ψ(3)〉〈χ(3)| =

 2/5 1/15 −4/15
2/5 1/15 −4/15
−4/5 −2/15 8/15

 ≡ Q3.

So, an arbitrary power of Q may be found from

Qt = Q1 + (−1
3)tQ2 + (16)tQ3.

Thus, we have a way of computing

P(t) = QtP(0).

Lecture 1 – Stochastic processes February 7, 2020 50 / 51



Now, we can notice a few things from this. First, note that the smallest
eigenvalue will have little effect on the late-time behaviour of the system.
That is, for high t, the last term will be negligible. The next largest
eigenvalue gives the dominant large t behaviour. Second, notice that if any
of the eigenvalues had been > 1, then the system would have diverged.
Finally, the very-large t behaviour is completely determined by Q1.

If the initial state of the system is, for instance, P(0)T = (1 0 0), then
multiplying the above expression for Qt into this gives

P(t) =

 1/10
3/5

3/10

+

(
−1

3

)t
 1/2
−1
1/2

+

(
1

6

)t
 2/5

2/5
−4/5


From this we can calculate, for example, the mean

〈n(t)〉 =
3∑

n=1

nP(n, t) = P(1, t) + 2P(2, t) + 3P(3, t) =
11

5
− 6

5

(
1

6

)t
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