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The Master Equation

This is basically the continuous time version of Markov chains.

Derivation from the Chapman-Kolmogorov (CK) equation
The CK equation is

p(n, t + ∆t|n0, t0) =
∑
n′

p(n, t + ∆t|n′, t)p(n′, t|n0, t0).

Now, we assume that

p(n, t + ∆t|n′, t) =

{
1− κn(t)∆t +O(∆t)2, if n = n′,
wnn′(t)∆t +O(∆t)2, if n 6= n′.

(1)

wnn′(t) is the transition rate and is only defined for n 6= n′

Now, by normalisation,

1 =
∑
n

p(n, t + ∆t|n′, t)

= 1− κn′(t)∆t +O(∆t)2 +
∑
n 6=n′

wnn′(t)∆t +O(∆t)2
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⇒ κn′(t) =
∑
n 6=n′

wnn′(t).

Alternatively, switching the indices,

κn(t) =
∑
n′ 6=n

wn′n(t). (2)

Therefore, using (1), we see that the CK equation reads

p(n, t + ∆t|n0, t0) = (1− κn(t)∆t + . . .)p(n, t|n0, t0)

+
∑
n′ 6=n

wnn′(t)p(n′, t|n0, t0)∆t +O(∆t)2,

⇒ p(n, t + ∆t|n0, t0)− p(n, t|n0, t0)

∆t

= −κn(t)p(n, t|n0, t0) +
∑
n′ 6=n

wnn′(t)p(n′, t|n0, t0) +O(∆t).
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Now let ∆t → 0:

dp(n, t|n0, t0)

dt
= −κn(t)p(n, t|n0, t0) +

∑
n′ 6=n

wnn′(t)p(n′, t|n0, t0).

Using (2), the middle term may be rewritten to find

dp(n, t|n0, t0)

dt
= −

∑
n′ 6=n

wn′n(t)p(n, t|n0, t0) +
∑
n′ 6=n

wnn′(t)p(n′, t|n0, t0).

If we had started, not from the CK equation, but from the first relation
which defines Markov processes:

p(n, t + ∆t) =
∑
n′

p(n, t + ∆t|n′, t)p(n′, t)

then exactly the same sequence of steps would lead to

dp(n, t)

dt
= −

∑
n′ 6=n

wn′n(t)p(n, t) +
∑
n′ 6=n

wnn′(t)p(n′, t).
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This equation could also have been obtained by multiplying the equation
for p(n, t|n0, t0) by p(n0, t0) and summing over all initial states, since

p(n, t) =
∑
n0

p(n, t|n0, t0)p(n0, t0).

Therefore both p(n, t|n0, t0) and p(n, t) satisfy the same equation. We
will frequently write it for p(n, t), with the understanding that this could
also be thought of as the conditional probability.

The equation is the desired master equation,

dp(n, t)

dt
=
∑
n′ 6=n

wnn′(t)p(n′, t)−
∑
n′ 6=n

wn′n(t)p(n, t). (3)

The interpretation of the master equation is straightforward. The first
term is just the probability of going from n′ → n, and the second the
probability of going from n→ n′.
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In words, the rate of change of being in a state n is equal to the
probability of making a transition into n, minus the probability of
transitioning out of n.

In applications the wnn′ are assumed to be given (this specifies the model)
and we wish to determine the p(n, t).

Comments:

• Notice that because of the Markov property, wnn′ only depends on the
current state of the system (n′), and does not depend on previous states
(i.e. how the system got to n′).

• In the derivation we have assumed that wnn′ depends on time (which it
does in general, just as for Markov chains), but usually we are only
interested in situations where it is time-independent.
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More informal derivations of the master equation

The master equation is essentially a balance equation; the rate of moving
into the state n minus the rate of moving out of the same state is the rate
of change of p(n, t). That is,

Rate of change of p(n, t) =

[ Rate due to transitions into the state n from all the other states n′] -

[ Rate due to transitions out of the state n into all other states n′]

When expressed this way, and assuming the process is Markov, the master
equation

dp(n, t)

dt
=
∑
n′ 6=n

wnn′(t)p(n′, t)−
∑
n′ 6=n

wn′n(t)p(n, t),

appears very reasonable.
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Another derivation, which is also less rigorous than the original, starts
from the system described as a Markov chain, and moves to continuous
time by taking the duration of the time-step to zero:

So, let us start from

Pn(t + 1) =
∑
n′

Qnn′(t)Pn′(t),

where the columns of the transition matrix add to unity:∑
n′

Qn′n(t) = 1.

So, if we write

Pn(t + 1)− Pn(t) =
∑
n′

Qnn′(t)Pn′(t)−
∑
n′

Qn′n(t)Pn(t),

then the terms in the sums with n′ = n can be cancelled to give

Pn(t + 1)− Pn(t) =
∑
n′ 6=n

Qnn′(t)Pn′(t)−
∑
n′ 6=n

Qn′n(t)Pn(t),

Lecture 2 – Master equation and system size expansion February 7, 2020 9 / 47



Now, we take the time step to be ∆t, rather than unity, and divide
through by the time step;

Pn(t + ∆t)− Pn(t)

∆t
=
∑
n′ 6=n

Qnn′

∆t
Pn′(t)−

∑
n′ 6=n

Qn′n

∆t
Pn(t).

Then, it is clear that taking the time step to zero, reduces the left-hand
side to a differential of the probability, with respect to time. Furthermore
instead of assuming that exactly one sampling event happens per time
step, we assume that on average one event happens in the time step. To
achieve this set

Qnn′(t) = wnn′(t)∆t +O(∆t)2, n 6= n′.

So letting ∆t → 0 we obtain the master equation:

dPn

dt
=
∑
n′ 6=n

wnn′(t)Pn′(t)−
∑
n′ 6=n

wn′n(t)Pn(t).
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The birth and death stochastic model

1 Simple model of population
growth.

2 Individuals enter/exit the
community.

Bacteria dynamics.

Demography.

Queueing theory.
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Exact numerical scheme: the Gillespie algorithm

Consider a given chemical equation, R1. Assume Si , with i = 1, 2, to label
the involved reactants (called Substrates in the original paper by Gillespie):

S1 + S2
c−→ 2S1

In words: the (individual!) molecule of type S1 can combine with an
(individual!) molecule of type S2 to result into two molecules of type S1.

The probability that such a reaction will take place in the forthcoming
time interval dt is controlled by:

the number of molecules of type S1 and S2 and the number of
possible combinations that yield to an encounter between a molecule
of type S1 and another of type S2.

the average probability that given a pair of molecules S1 ed S2, the
reaction R1 takes over.
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Assume n1 e n2 to label the number of molecules of type 1 e 2
respectively. Then, h = n1n2 is the number of independent combinations
that result in a pair S1 - S2.
On the other hand c measures the probability per unit of time of reacting.
Hence:

P1 = chdt = cn1n2dt

is the probability that the reaction R1 takes over in a given time interval
dt.

So far so good! What is going to happen if we have instead a system of
reactions?

How are we going to sort out which reaction is going to happen first?
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Let us consider first the case where two reactions are at play, namely R1

and R2, specified as follows:

S1 + S2
c1−→ 2S1

2S1
c2−→ S3

Answering to two questions is mandatory at this point:

When is the next reaction going to occur?

Which reaction is going to happen?

Focus on the general framework.

Imagine to have k type of molecules partitioned in the following families
(n1, n2, n3...) and assume that those molecules can react according to M
distinct reaction channels, labelled with Ri con i = 1, ..,M.
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We need to calculate the quantity:

P(τ, i)dτ

i.e. the probability that given the system in the state (n1, n2, n3...) at
time t:

the next reaction occurs in the time interval from t + τ to t + τ + dτ .

it is the reaction Ri .

The core of the algorithm is to evaluate the, presently unknown, quantity
P(τ, i)dτ .

Lecture 2 – Master equation and system size expansion February 7, 2020 15 / 47



The key idea is to split such a probability into two distinct contributions,
as outlined below:

the probability P0(τ) that, given the state (n1, n2, ...) at time t, no
reaction would eventually occur in the time interval (t, t + τ).

the probability Pi that the reaction i occurred in the time interval
(t + τ, t + τ + dτ).

The second quantity can be readily evaluated. We know that

Pi = cihidτ

where hi refers to the number of possible combinations of the chemicals as
specified by reaction Ri . ci is instead the average probability per unit of
time that the molecules could react and so give birth to the prescribed
products.
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To evaluate P0(τ), the probability that no reaction occurs in in (t, t + τ),
imagine to partition the inspected time interval τ into K sub-intervals,
each of size ε = τ/K . The probability that no reaction occurred in the
first interval (t, t + ε) is:

ΠM
j=1 [1− cjhjε] = 1−

M∑
j=1

cjhjε+ O(ε)

On the other hand this is also the probability that no reaction would occur
in the next time interval (t + ε, t + 2ε). Since we have K consecutive
intervals, one can write:

P0(τ) =

1−
M∑
j=1

cjhjε+ O(ε)

K

=

1−
M∑
j=1

cjhjτ/K + O(K−1)

K
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Perform now the limit for K →∞. We eventually obtain:

P0(τ) = exp

− M∑
j=1

cjhjτ


from which the fundamental result follows:

The sougth probability P(τ, i)

P(τ, i) = P0(τ)ai = ai exp(−a0τ)

where we have introduced the compact notation:

ai = cihi

and

a0 =
M∑
j=1

cjhj
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The above expression for P(τ, i) holds for 0 < τ <∞ and i = 1, ..,M.

Starting from this setting one can construct an exact algorithm that
enables one to track the dynamics of a large ensemble of microscopic
constituents that have to obey to an assigned set of chemical rules (or,
equivalently, whose probability P(n, t) has to obey to a given Master
equation).

The core idea of the computational scheme (Gillespie algorithm) is to
implement a Monte Carlo strategy that is able to simulate the stochastic
process represented by P(τ, i). In the following we discuss the sequential
steps that we are going to consider.
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STEP 0. At time t = 0 assign the initial values to the variables
n1, n2, ... and to the parameters ci . Calculate the quantities hici
which in practice determine P(τ, i). One can also define the time of
observation t1 < t2 < ... and the stopping time ts .

STEP 1. Make use of a dedicated Monte Carlo technique to generate
a random pair (τ, i), which obeys to the joint probability density
function P(τ, i).

STEP 2. Make use of the values as generated above to advance the
system in time by a quantity τ , while adjusting the values of the
population sizes ni implicated in the selected reaction i . After this
operation is being taken to completion, calculate again the quantities
hici for those reactions that have experienced a change in the
chemicals amount.

STEP 3. If time t is less than ts or if there are no reactants left into
the system (hi = 0) stop the simulations. Otherwise, start again from
STEP 1.
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Clearly the crucial step is:

STEP 2. Make use of a dedicated Monte Carlo technique to generate
a random pair (τ, i), which obeys to the joint probability density
function P(τ, i).

to which the following slides are entirely devoted.
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We should generate the pair (τ, i) in accordance with the distribution
P(τ, i), as calculated below. We shall illustrate the so called direct
method.

To this end we shall make use of our ability to generate random numbers r
obeying to a uniform distribution. Notice that τ is a continuous variable,
while i is discrete.

First let us write:

P(τ, i) = P1(τ)P2(i |τ)

The probability P1(τ) follows from:

P1(τ) =
M∑
i=1

P(τ, i)

Hence, inserting in the preceding relation:

P2(i |τ) = P(τ, i)/
M∑
i=1

P(τ, i)
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Recalling the above expression for P(τ, i) yields:

P1(τ) = a0 exp(−a0τ)

P2(i |τ) = ai/a0

where 0 ≤ τ <∞ and i = 1, 2, ..M.
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Both probability density functions are normalized in their respective
domain of definition.

∫ ∞
0

P1(τ) =

∫ ∞
0

a0 exp(−a0τ) = 1

M∑
j=1

P2(i |τ) =
M∑
j=1

ai/a0 = 1

The idea of the direct method is to generate a random number τ in
agreement with P1(τ) and then an integer i as dictated by P2(i |τ). The
resulting pair (τ, i) will therefore obey to P(τ, i).
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As we shall outline in the following, it is possible to generate a random
quantity τ which obeys to P1(τ): (i) by extracting a random number r1
from a uniform distribution and (ii) by calculating:

τ = (1/a0) log(1/r1)

Analogously (no proof given here), one can obtain an integer random i
which obeys to P2(i |τ) by extracting a random (real) number r2 from a
uniform distribution and selecting i as the integer that fulfills the double
inequivalence:

i−1∑
j=1

aj < r2a0 <
i∑

j=1

aj
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Finally, we discuss the origin of the formula for τ . It follows from the
inversion technique, a Monte Carlo method which enables one to generate
random numbers from a generic pdf, by using uniformly distributed
random numbers.

Assume, we wish to generate the random number x distributed as P(x).
By definition, P(x ′)dx ′ is the probability that x falls in the interval
delimited by x ′ and x ′ + dx ′. Consider F (x) defined as:

F (x) =

∫ x

−∞
P(x ′)dx ′

clearly F (x0) is the probability that x is smaller than x0. Function F (x)
measures the probability for x to be smaller than x0. F (x) is the
probability distribution, distinct from the probability density function P(x).
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The inversion method, consists in extracting a uniformly distributed
random number r and then select x such that F (x) = r , namely:

x = F−1(r)

where F−1(·) is the inverse of the distribution function associated to the
pdf P(·).
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Calculate in fact the probability that x as generated according the the
above prescriptions would fall in the interval [x ′, x ′+ dx ′]. By construction,
this probability is identical to the probability that r falls in between F (x ′)
e F (x ′ + dx ′). Since r is uniformly distributed, such a probability reads:

F (x ′ + dx ′)− F (x ′) = F ′(x ′)dx ′ = P(x ′)dx ′
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Assume one needs to generate a random number distributed as the pdf:

P(x) = A exp(−Ax)

Then F (x) = 1− exp(−Ax) e so, by imposing F (x) = r one readily obtains

x = (1/A) log(1/r)

i.e. the formula evoked before. Notice that in the derivation we have
replaced 1− r with the statistically equivalent quantity r .
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On the implementation: back to the birth-death model

E
b−→ X

X
d−→ E

X stands for one individual

E is one empty space (vacancy)

n number of element of type X

nE = N − n
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The initial condition:

time=zeros(1,tmax);

nX=zeros(1,tmax);

nL(1,1)=X;
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The main loop:

for i=2:tmax,

Calculate the transition probability

a1 = b (N-X)/N;

a2 = d X/N;

a0=a1+a2;

Gillespie recipe

r1=rand(1,1); r2=rand(1,1);

tau=-1/a0*log(r1); r2=a0*r2;

ind=1;

Update the population amount

Save the results

end
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Recall that to obtain a random integer i which obeys to P2(i |τ) one can
extract a random (real) number r2 from a uniform distribution and then
select i as the integer that fulfills the double inequivalence:

i−1∑
j=1

aj < r2a0 <
i∑

j=1

aj (4)

In practice the values of aj are summed iteratively until the obtained sum
becomes larger than r2a0. The corresponding integer j (the number of
elements summed up) is the index i we are looking for.
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while(ind),

prob=a1;

if(r2<prob),

X=X+1; ind=0; break;

end

prob=prob+a2;

if(r2<prob),

X=X-1; ind=0; break;

end

end
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Perturbative approach to characterize the fluctuations

The birth and death process introduced above yields the following master
equation for the probability P(n, t):

dP(n, t)

dt
= −T (n − 1|n)P(n, t) + T (n|n + 1)P(n + 1, t)

−T (n + 1|n)P(n, t) + T (n|n − 1)P(n − 1, t)

Here n stands for the (discrete) number of individual of type X . The
transition probabilities can be readily obtained as:

T (n − 1|n) = d
n

N

T (n + 1|n) = b
(

1− n

N

)
where N is the total number of microscopic constituents, including the
empties.
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Recovering the deterministic (mean field) limit

Focus on the time evolution of the mean quantity:

〈n〉
N

=
1

N

∑
n

nP(n, t)

To this end, multiply by n both sides of the Master Equation and sum over
all possible states.

Left hand side∑
n

n
dP(n, t)

dt
=

d

d(t/N)

∑
n

n

N
P(n, t) =

d〈n〉
dτ

where τ = t/N.
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Right hand side (first two terms)

∑
n

n (T (n|n + 1)P(n + 1, t)− T (n − 1|n)P(n, t))

=
∑
n′

(n′ − 1)T (n′ − 1|n′)P(n′, t)−
∑
n

nT (n − 1|n)P(n, t)

= −
∑
n

T (n − 1|n)P(n, t)

Recalling the definition of T (n − 1|n) one obtains:

−
∑
n

d
n

N
P(n, t) = −d 〈n〉

N
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Similarly, for the other terms

Right hand side (last two terms)

∑
n

n (T (n|n − 1)P(n − 1, t)− T (n + 1|n)P(n, t))

=
∑
n′

(n′ + 1)T (n′ + 1|n′)P(n′, t)−
∑
n

nT (n + 1|n)P(n, t)

=
∑
n

T (n + 1|n)P(n, t)

Recalling the definition of T (n + 1|n) one obtains:

∑
n

b
(

1− n

N

)
P(n, t) = b

(
1− 〈n〉

N

)
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Collecting all terms together:

d〈n〉
dτ

= b

(
1− 〈n〉

N

)
− d
〈n〉
N

and introducing φ = 〈n〉/N:

dφ

dτ
= b (1− φ)− dφ

The above ODE governs the evolution of the (continuum) average
distribution. Fluctuations have been dropped by performing the ensemble
average. The solution of the ODE is:

φ(τ) =
b

b + d

[
1−

(
1− φ0

b + d

b

)
exp[−(b + d)τ ]

]
The system converges asymptotically to the stable fixed point
φ∗ = b/(b + d)
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Accounting for fluctuations: the van Kampen expansion

The van Kampen ansatz consists in splitting the finite size concentration
n/N into two contributions:

n

N
= φ+

ξ√
N

where ξ is a stochastic variable. The quantity 1/
√
N is small for large or

moderate system sizes N: it hence plays the role of small parameter in a
perturbative expansion. Start by re-writing the master equation in the
following compact form:

dP

dt
=

(
E+1 − 1

)
T (n − 1|n)P(n, t)

+
(
E−1 − 1

)
T (n + 1|n)P(n, t)

where E±1f (n) = f (n± 1), f (n) being an arbitrary function of the discrete
variable n.

Lecture 2 – Master equation and system size expansion February 7, 2020 40 / 47



Let us begin by considering the left hand side of the master equation.
Introduce Π(ξ, t) ≡ P(n(φ, ξ), t). Hence:

∂Π

∂t
=
∂P

∂t
+
∂P

∂n

∂n

∂t

and thus:

∂P

∂t
=
∂Π

∂t
− ∂P

∂n
N
dφ

dt

On the other hand:

∂Π

∂ξ
=
∂P

∂ξ
=
∂P

∂n

∂n

∂ξ
=
∂P

∂n

√
N

Combining the two above expressions:

Right hand side of ME

∂P

∂t
=

1

N

∂Π

∂τ
− 1√

N

dφ

dτ

∂Π

∂ξ
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Consider:

E+1f (n) = f (n + 1) = f
(
Nφ+

√
Nξ + 1

)
= f

(
Nφ+

√
N

(
ξ +

1√
N

))
Hence:

E+1f
(
Nφ+

√
Nξ
)

= f

(
Nφ+

√
N

(
ξ +

1√
N

))
or equivalently:

E+1f (ξ) = f

(
ξ +

1√
N

)
' f (ξ) +

1√
N
∂ξf +

1

2N
∂2ξ f

and:

(
E+1 − 1

)
f (ξ) =

(
1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2

)
f (ξ)
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Summing up, the above step-operators E±1 (as they are called) admits a
straightforward expansion with respect to 1/

√
N.

E±1 = 1± 1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2
+ ...

Hence the first term in the right hand side of the master equation reads:

(
E+1 − 1

)
T (n − 1|n)P(n, t)

=

(
1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2

)
d

(
φ+

ξ√
N

)
Π(ξ, t)
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By organizing the various terms in the above expression one gets:

First terms in the right hand side

1√
N

[
dφ

∂

∂ξ
Π

]
+

1

N
d

[
∂

∂ξ
(ξΠ) +

1

2
φ
∂2

∂ξ2
Π

]
+ ...

up to 1/N contributions. Similarly for the other contribution in the master
equation:

Last terms in the right hand side

− 1√
N

[
b(1− φ)

∂

∂ξ
Π

]
+

1

N
b

[
∂

∂ξ
(ξΠ) +

1

2
(1− φ)

∂2

∂ξ2
Π

]
+ ...
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At the leading order, 1/
√
N

Confronting the terms at the leading order in the master equation one
obtains:

dφ

dτ
= b (1− φ)− dφ

namely the equation which rules the dynamics of the examined system in
the deterministic limit.
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At the next-to-leading order, 1/N

Confronting the terms at the next-to-leading order in the master equation
one obtains the following Fokker-Planck equation :

∂Π

∂τ
= (d + b)

∂

∂ξ
(ξΠ) +

1

2
(dφ+ b(1− φ))

∂2

∂ξ2
Π

The solution of the above one-dimensional Fokker-Planck equation is a
Gaussian whose first and second moments can be readily computed.
Multiply both sides of the Fokker-Planck equation by ξ and integrate over
the real axis in dξ. A simple calculation yields:

First moment of Π

d〈ξ〉
dτ

= −(b + d)〈ξ〉

where 〈ξ〉 =
∫
ξΠdξ. The solution reads 〈ξ〉 = 〈ξ〉0 exp [−(d + b)τ ].

Asymptotically, 〈ξ〉 → 0. Finite size fluctuations are hence described by a
Gaussian centered in zero for sufficiently long times.
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A similar reasoning applies to the second moment. The latter is defined as
〈ξ2〉 =

∫
ξ2Πdξ and it can be shown to obey to the following differential

equation:

Second moment of Π

d〈ξ2〉
dτ

= −2(b + d)〈ξ2〉+ [(d − b)φ+ b]

Assume we are interested in the statistics of the fluctuations around the
deterministic equilibrium, when φ→ φ∗ = b/(b + d). Imposing

stationarity (d〈ξ
2〉

dτ = 0) yields:

〈ξ2〉st ≡ σ2 =
db

(d + b)2

The distribution of fluctuations is hence predicted to be:

Πst(ξ)
1√
2πσ

exp

(
− ξ2

2σ2

)
Lecture 2 – Master equation and system size expansion February 7, 2020 47 / 47


