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Defining complex systems...

Complex systems is a broad term which defines a research
approach to problems in many diverse disciplines.

1 Complex systems are
many body systems, which
exhibit emergent collective
behaviours.

2 The collective behavior of
their parts entails
macroscopic properties
that can hardly be inferred
from the microscopic rules
of interactions.
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The challenge.

The whole is more than the
sum of its parts (Aristotle)

Bridging the gap between
the microscopic and
macroscopic realms
Build mathematical models
of the examined problem.
The model oughts to be
simple but bear predictive
power (reductionistic
approach).
Self-organization at
different spatial and
temporal scales
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A gallery of examples I: active matter.

Herd of sheep behaves like a
fluid.
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A gallery of examples I: active matter.

Herd of sheep behaves like a
fluid.

Flocking of starlings yields
coherent patterns.
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A gallery of examples I: active matter.

Simulating the flocking in silico
(courtesy of F. Ginelli).

Flocking of sterling form
coherent patterns.
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A gallery of examples II: biology and life sciences

Large scale dynamics of an
antibody.
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A gallery of examples II: biology and life sciences

Large scale dynamics of an
antibody.

ATP fueled walk of molecular
motors on actin filaments.
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A gallery of examples II: biology and life sciences

From the spontaneous
assembly of lipid membranes....

...to the complex functioning of
the cellular machinery.
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A gallery of examples III: neuroscience.

Interlaced dynamics of large
neuronal population (courtesy
of L. Silvestri).
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A gallery of examples IV: synchronicity.

Spontaneous synchronization.

1 Oscillations are central for
life (neurons, circadian
clocks)

2 Individual oscillations
should be coordinated to
operate a system in
unison.
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A gallery of examples V: granular materials.

Crowd dynamics: experiments
and theory.

Granular on a vibrating plate.
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Summing up...

Investigating the dynamical evolution of an ensemble made of
microscopic entities in mutual interaction constitutes a rich and
fascinating problem, of paramount importance and
cross-disciplinary interest.

Spontaneous self-organization

Complex microscopic interactions can eventually yield to
macroscopically organized patterns.
Temporal and spatial order manifests as an emerging
property of the system dynamics.
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Defining micro and macro

The example of life sciences
Hierarchical dependence and multi-level structure.
Non linear interactions.
Simulations/dynamical models needed to fully appreciate
the mutual dependences among constituents.
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From individuals to populations
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The theoretical frameworks

Model the dynamics of the population involved
(family of homologous chemicals)

From the microscopic picture ...

Assign the microscopic
rules of interactions

Discrete, many particles
model

Deterministic
formulation (continuum

limit hypothesis)
Differential equations
No fluctuations allowed

Stochastic model
(respecting the intimate

discreteness)
Stochastic processes
Statistical, finite sizes
fluctuations

D. Fanelli Complex systems



Take home messages

1 Finite size corrections do matter: macroscopic order, both
in time and space, can emerge as mediated by the
microscopic disorder (inherent granularity and
stochasticity)

2 Endogenous fluctuations cannot be neglected in systems
made by finite constituents and may act as a factual drive
for the implementation of dedicated functions
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Example 1: birth/death processes.

1 Simple model of
population growth.

2 Individuals enter/exit the
community.

Bacteria dynamics.
Demography.
Queueing theory.
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1 Universal grammar of the
chemical equations.

2 Moves occur with given
probabilities.

3 Stochasticity and
fluctuations are at play.

E
bÐ→ X

X
dÐ→ E

X is one element of the
population.
E stands for an empty
space.
nE + nX = N, the size of
the system.
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Dynamical evolution for the averaged system

Average over different histories (trajectories), < nX >
Wash out noise and fluctuations.
Deterministic evolution of the mean concentration,
φ =< nX > /N

dφ
dt

= b(1 − φ) − dφ

First oder ODE
The system converges to
the stable equilibrium
φ∗ = b/(b + d)

Time
0 50 100 150

φ
(t

)

0.2

0.3

0.4

0.5

0.6

0.7
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Visualizing fluctuations via numerical simulations.

Time
0 50 100 150

φ
(t

)

0

0.2

0.4

0.6

0.8

1

Each trajectory is unique and appears as the noisy version of
the averaged profile.
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Visualizing fluctuations via numerical simulations.

Time
0 50 100 150

φ
(t

)
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0.6

0.8

1
N=100

The deterministic curve is approached for N →∞, i.e. for
diverging system size.
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Visualizing fluctuations via numerical simulations.

Time
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The deterministic curve is approached for N →∞, i.e. for
diverging system size.
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Visualizing fluctuations via numerical simulations.

Time
0 50 100 150

φ
(t

)
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1
N=10000

The deterministic curve is approached for N →∞, i.e. for
diverging system size.
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Shedding light on fluctuations: formal tools.

a. Introduce P(nX , t) to label the probability for the system to
be in state nX at time t .
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Shedding light on fluctuations: formal tools.

a. Introduce P(nX , t) to label the probability for the system to
be in state nX at time t .

b. The dynamics of the system is governed by a master
equation, a balance equation for the change in time of
P(nX , t):

dP(nX , t)
dt

= (incoming) − (outgoing)
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c. The master equation yields the deterministic ODE,
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Shedding light on fluctuations: formal tools.

a. Introduce P(nX , t) to label the probability for the system to
be in state nX at time t .

b. The dynamics of the system is governed by a master
equation, a balance equation for the change in time of
P(nX , t):

dP(nX , t)
dt

= (incoming) − (outgoing)

c. The master equation yields the deterministic ODE,
performing the limit N →∞ (fluctuations fade away).

d. For large or moderate N, fluctuations play a role. The
master equation reduces to a Fokker-Planck equations for
the distribution of fluctuations.
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The predictive power of the theory.
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R. Arbel-Goren et al. Life (2018).
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Up to now...

1 Systems composed by a finite set of interacting
constituents, say N, are subject to fluctuations .

2 Fluctuations are endogenous, as stemming from the finite
size N.

3 They fade away when N →∞.
4 Stochastic contributions can be studied with appropriate

tools.
5 For the case at hand, the endogenous stochastic drive

results in a noisy perturbations around the deterministic
solution.

Is this the rule? Can we expect peculiar features to emerge
from the inherent stochasticity?
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Example II: modeling the brain dynamics

A neuron is an excitable cell that processes information
through electrical and chemical signals.
Neurons come in a variety of shapes and morphologies
(excitatory and inhibitory neurons).
Neurons can be grouped in homologous families, referred
to as populations.
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The Wilson-Cowan model

Excitator (x) vs. inhibitor (y)

ẋ = −αEx + f (wEEx −wEIy + hE)
ẏ = −αIy + f (wIEx −wIIy + hI)

where:
wij , i , j = I,E are positive defined
parameters.
hE and hI stand for the external
stimuli.
f (s) = 1/(1 + exp(−s)) is a
sigmoid function.

1. The original model is
deterministic in nature.

2. Stochastic (birth/death)
versions also exist.

3. Role of endogenous
(finite size/volume)
fluctuations.
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A minimal stochastic E-I model.

Label X and Y individual excitatory and inhibitory elements.

Birth-death scheme

∅ f [sx ]Ð→ X ∅
f [sy ]Ð→ Y

X
1Ð→ ∅ Y

1Ð→ ∅

where:

sx =−r (
nY

V
−1

2
).

sy =r (nX

V
−1

2
).

r >0 is the only free parameter.
nX and nY identify the number
of elements of type X and Y .

Logic flow

a. Introduce Pn(t) to label
the probability for the
system to be in state
n = (nX ,nY ) at time t .

b. The dynamics of the
system is governed by a
master equation.

c. Perform a
Kramers-Moyal
expansion, 1/

√
V acting

as small parameter.
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Fluctuating hydrodynamic approximation

ẋ = −x + f [−r(y − 1
2
)] + 1√

V
[x + f (−r(y − 1

2
))]

1/2
ηx

ẏ = −y + f [r(x − 1
2
)] + 1√

V
[y + f (r(x − 1

2
))]

1/2
ηy

stochastic non linear equations.
multiplicative noise.
ηx and ηy are delta correlated Gaussian variables.

Deterministic limit, V →∞
The deterministic model admits a fixed point x∗ = y∗ = 1/2. The
linear stability analysis returns λ = −1 ± i

r
4
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Visualizing quasi-regular oscillations

Finite size corrections do matter: macroscopic order can
emerge as mediated by the microscopic disorder (inherent
granularity and stochasticity)
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Fluctuations and quasi-cycles

Linear noise approximation

x(t)=x∗+V−1/2ξ1
y(t)=y∗+V−1/2ξ2

ξ̇i =∑
j

Jijξj+ηi with i = 1,2

where ηi(t) is a Gaussian noise
with < ηi(t)ηj(t ′) >=δijδ(t − t ′).

Power spectral density matrix

Pij(ω) =< ξ̃i(ω)ξ̃∗j (ω) >=
2
∑
l=1

2
∑
m=1

Φ−1
il (ω)δlm (Φ†)−1

mj (ω)

where Φij =−Jij−iωδij
Fanelli et al. , Phys. Rev. E (2017).
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Example III: stochastic circadian clocks.

A circadian clock is a biochemical oscillator which makes it
possible for the organism to adjust to the day-night cycle.

Key properties:
Endogenous rhythmicity
when stimuli are lacking.

Susceptibility to external
stimuli which prompt
synchronization.

Ability to adjust to
temperature variation.

Cyanobacteria are among the simplest organisms to possess a
biological circadian clock.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.

Produce and release oxygen in the atmosphere
Fix nitrogen.

Synechococcus el. Anabaena sp.

The core of the circadian clock in cyanobacteria is composed
by three proteins: KaiA, KaiB e KaiC.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
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Modeling the dynamics – 1

KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO3−

4 .

The different configurations of KaiC are termed
phosphoforms.

KaiA and KaiB interact with
KaiC following an ordered
scheme which drives regular
oscillations in the concentration
of the different phosphoforms.

T= T-KaiC, D= ST-KaiC, S=
S-KaiC
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modifies the structure of the protein with the inclusion of a
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4 .

The different configurations of KaiC are termed
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Modeling the dynamics – 2

KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO3−

4 .

The different configurations of KaiC are termed
phosphoforms.

[Rust et al., Science,
2007]

kXY (φS) = k0
XY + kA

XY f (φS)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̇T =φUkUT +φDkDT −φT kTU −φT kTD

φ̇D =φT kTD +φSkSD −φDkDT −φDkDS

φ̇S =φUkUS +φDkDS −φSkSU −φSkSD

D. Fanelli Complex systems



Modeling the dynamics – 2

KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO3−

4 .

The different configurations of KaiC are termed
phosphoforms.

[Rust et al., Science,
2007]

kXY (φS) = k0
XY + kA

XY f (φS)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̇T =φUkUT +φDkDT −φT kTU −φT kTD

φ̇D =φT kTD +φSkSD −φDkDT −φDkDS

φ̇S =φUkUS +φDkDS −φSkSU −φSkSD

φU = [KaiC] − φT − φD − φS
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The idealized continuum limit

A linear stability analysis around the fixed point solution
φ∗ = (φ∗T , φ∗D, φ∗S) yields the following scenario

Parameter plane (γ, [KaiA]) Bifurcation diagram, φT .
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Exploring different dynamical regimes

γ = 8, [KaiA] = 1.2
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In region I the concentration of the phosphoforms of KaiC
converges to a fixed point (absence of circadian cycles).
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Stochastic modeling

The system operates in a low copy number regime.

Endogenous noise as stemming from finite size corrections
do matter.

Model the stochastic dynamics of individual constituents:
ni stands for the number of element of species i = T,S,D

phosphorylation U
kUTÐÐ→ T , U

kUSÐÐ→ S

de-phosphorylation T
kTUÐÐ→ U, S

kSUÐÐ→ U

inter-conversion T
kTDÐÐ→ D, S

kSDÐÐ→ D

D
kDTÐÐ→ T , D

kDSÐÐ→ S
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Master equation

The state of the system is photographed by
n(t) = (nT ,nD,nS).

These are stochastic variables distributed as
P(n, t) ≡ P(nT ,nD,nS; t).
The evolution of P(n, t) is governed by a master equation
of the general form:

∂P(n, t)
∂t

= ∑
n′≠n

[T(n∣n′)P(n′, t) −T(n′∣n)P(n, t)]

Typical transition rates read:

(inter-conversion) T
kTDÐÐ→ D T(nT − 1,nD + 1∣n) = nT

N
kTD
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Master equation in its full complexity.

∂P(n, t)
∂t

= T(n∣nT − 1)P(nT − 1; t) −T(nT + 1∣n)P(n, t)+

+T(n∣nS − 1)P(nS − 1; t) −T(nS + 1∣n)P(n, t)+
+T(n∣nT + 1)P(nT + 1; t) −T(nT − 1∣n)P(n, t)+
+T(n∣nS + 1)P(nS + 1; t) −T(nS − 1∣n)P(n, t)+

+T(n∣nT + 1,nD − 1)P(nT + 1,nD − 1; t) −T(nT − 1,nD + 1∣n)P(n, t)+
+T(n∣nD − 1,nS + 1)P(nD − 1,nS + 1; t) −T(nD + 1,nS − 1∣n)P(n, t)+
+T(n∣nT − 1,nD + 1)P(nT − 1,nD + 1; t) −T(nT + 1,nD − 1∣n)P(n, t)+
+T(n∣nD + 1,nS − 1)P(nD + 1,nS − 1; t) −T(nD − 1,nS + 1∣n)P(n, t)
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: inside.

γ = 10
[KaiA] = 1.2
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: outiside.

γ = 8
[KaiA] = 1.2
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R. Arbel-Goren et al., (2020)
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Comparing with the experiments - Synechococcus el.

Fluorescence activity in
Synechococcus el.

[In collaboration with J. Stavans
group @Weizmann]

Power spectrum
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Synechococcus el.
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Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.
Endogenous noise can also seed regular patterns in
space.
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Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.
Endogenous noise can also seed regular patterns in
space.

R. Arbel-Goren et al. Life (2018).

Arabidopsis thaliana - I
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Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.
Endogenous noise con also seed regular patterns in
space.

M. C. Sainz et al., in preparation (2020).
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Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.
Endogenous noise con also seed regular patterns in
space.

Synthetic bacterial populations - II

D. Karig et al., PNAS (2018).
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Conclusions

Spontaneous drive to self-organization in Nature.
Regular motifs in space and time originate from a large
sea of interacting individual constituents.
Finite size corrections yield ordered macroscopic patterns.
Stochastic patterns on heterogenous spatial supports
(networks, multiplex, hypergraphs).
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