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Complex systems is a broad term which defines a research
approach to problems in many diverse disciplines.

@ Complex systems are
many body systems, which
exhibit emergent collective
behaviours.

© The collective behavior of
their parts entails
macroscopic properties
that can hardly be inferred
from the microscopic rules
of interactions.
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The challenge.

@ Bridging the gap between
the microscopic and
macroscopic realms

@ Build mathematical models
of the examined problem.

@ The model oughts to be
simple but bear predictive
power (reductionistic
approach).

@ Self-organization at

The whole is more than the different spatial and

sum of its parts (Aristotle) \ temporal scales
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A gallery of examples : active matter.

Herd of sheep behaves like a
fluid.

D. Fanelli Complex systems



A gallery of examples : active matter.
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Herd of sheep behaves like a Flocking of starlings yields
fluid. coherent patterns.
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A gallery of examples : active matter.

Simulating the flocking in silico
(courtesy of F. Ginelli).
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Flocking of sterling form
coherent patterns.
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A gallery of examples ': biology and life sciences

Large scale dynamics of an
antibody.
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A gallery of examples ': biology and life sciences

Large scale dynamics of an ATP fueled walk of molecular
antibody. motors on actin filaments.
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A gallery of examples ': biology and life sciences

From the spontaneous ...to the complex functioning of
assembly of lipid membranes....  the cellular machinery.
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A gallery of examples ' ': neuroscience.

Interlaced dynamics of large
neuronal population (courtesy S e
of L. Silvestri).

The average fields show global
activity events.
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A gallery of examples ' ': synchronicity.

@ Oscillations are central for
life (neurons, circadian
clocks)

@ Individual oscillations
should be coordinated to
operate a system in
unison.

Spontaneous synchronization.
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A gallery of examples ': granular materials.

Andrea Pugls|

Transport and

. Fluctuations in Granular
Fluids

From Boltzmann Equation
to Hydrodynamics,
Diffusion and Motor:

| Effects

Crowd dynamics: experiments

and theory.
Y Granular on a vibrating plate.
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Investigating the dynamical evolution of an ensemble made of
microscopic entities in mutual interaction constitutes a rich and

fascinating problem, of paramount importance and
cross-disciplinary interest.

Spontaneous self-organization
@ Complex microscopic interactions can eventually yield to
macroscopically organized patterns.
@ Temporal and spatial order manifests as an emerging
property of the system dynamics.
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Defining and

The example of life sciences
@ Hierarchical dependence and multi-level structure.
@ Non linear interactions.

@ Simulations/dynamical models needed to fully appreciate
the mutual dependences among constituents.

Y )
So i S A L

DNA helix Coll nuchous Red blood (R‘“ Capillaries Blood vessels

ATOMS MOLECULES ORGANELLES CELLS TISSUES
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From

to

Length scales in biology

-9 -7 -5 ~1 3 7
10" metres 10 10 10 10 10
»
L
Proteins
DNA/genes camplgxes/ Cells Cellular Organisms Populations Life on
reaction aggregates - earth
networks
Develop- Ecology and Evolution
Molecular Bio- Cell mental - 9y Ecosystem theory
. p ; B Physiology population o =
biology chemistry biology biology/ . biology
: genetics P
genetics speciation)
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The theoretical frameworks

Model the dynamics of the population involved
(family of homologous chemicals)

From the microscopic picture ...

@ Assign the microscopic @ Discrete, many particles
rules of interactions model

Deterministic Stochastic model

(respecting the intimate
discreteness)
@ Stochastic processes

@ Statistical, finite sizes
fluctuations

formulation (continuum
limit hypothesis)
@ Differential equations
@ No fluctuations allowed
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Take home messages

@ Finite size corrections do matter: macroscopic order, both
in time and space, can emerge as mediated by the
microscopic disorder (inherent granularity and
stochasticity)

@ Endogenous fluctuations cannot be neglected in systems
made by finite constituents and may act as a factual drive
for the implementation of dedicated functions
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: birth/death processes.

@ Bacteria dynamics.
@ Demography.
@ Queueing theory.

insert

@ Simple model of
population growth.

@ Individuals enter/exit the
community.
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@ Universal grammar of the
chemical equations.
© Moves occur with given
probabilities. E 2 x
© Stochasticity and N=
fluctuations are at play.

@ X is one element of the
population.

@ E stands for an empty
space.

@ ng + nyx = N, the size of
the system.
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Dynamical evolution for the

system
@ Average over different histories (trajectories), < ny >

@ Wash out noise and fluctuations.

@ Deterministic evolution of the mean concentration,
¢ =<ny > /AJ

0.7
%zb(1—¢)_d¢ J 0.6+
0.5¢
@ First oder ODE =
@ The system converges to i
the stable equilibrium 03
¢* =b/(b+d)
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D. Fanelli

Time

150
Complex systems




Dynamical evolution for the system

@ Average over different histories (trajectories), < ny >
@ Wash out noise and fluctuations.
@ Deterministic evolution of the mean concentration,

¢ =<ny > /N

do '

—=b(1-¢)-d

dt (1-¢)-dg J 0.8
@ First oder ODE =06

@ The system converges to
the stable equilibrium
¢* =b/(b+d)

0.2
0 50 100 150

Time
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Visualizing via numerical simulations.

0 50 100 150
Time

Each trajectory is unique and appears as the noisy version of
the averaged profile.
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Visualizing via numerical simulations.

0 50 100 150
Time

Each trajectory is unique and appears as the noisy version of
the averaged profile.
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Visualizing via numerical simulations.

0 50 100 150
Time

Each trajectory is unique and appears as the noisy version of
the averaged profile.
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Visualizing via numerical simulations.
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0 50 100 150
Time

Each trajectory is unique and appears as the noisy version of
the averaged profile.
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Visualizing via numerical simulations.

N=100

0 50 100 150
Time

The deterministic curve is approached for N — oo, i.e. for
diverging system size.
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Visualizing via numerical simulations.

N=1000

0 50 100 150
Time

The deterministic curve is approached for N — oo, i.e. for
diverging system size.

o’
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Visualizing via numerical simulations.

N=10000

0 50 100 150
Time

The deterministic curve is approached for N — oo, i.e. for
diverging system size.
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Shedding light on : formal tools.

a. Introduce P(ny,t) to label the probability for the system to
be in state ny at time t. J
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Shedding light on : formal tools.

a. Introduce P(ny,t) to label the probability for the system to
be in state ny at time t.

b. The dynamics of the system is governed by a master
equation, a balance equation for the change in time of
P(nx, t):

dP(nx, t)

o = (incoming) — (outgoing)
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Shedding light on : formal tools.

a. Introduce P(ny, t) to label the probability for the system to
be in state ny at time t.

b. The dynamics of the system is governed by a master
equation, a balance equation for the change in time of
P(ny,t):

dP(nx, t)
at

c. The master equation yields the deterministic ODE,
performing the limit N — oo (fluctuations fade away).

= (incoming) — (outgoing)
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Shedding light on : formal tools.

a. Introduce P(ny, t) to label the probability for the system to
be in state ny at time t.

b. The dynamics of the system is governed by a master
equation, a balance equation for the change in time of
P(ny,t):

dP(nx, t)
at
c. The master equation yields the deterministic ODE,
performing the limit N - oo (fluctuations fade away).

d. For large or moderate N, fluctuations play a role. The
master equation reduces to a Fokker-Planck equations for
the distribution of fluctuations.

= (incoming) - (outgoing)
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The of the theory.

Theory (black line) and
simulations (red dots) agree
nicely.

Sampling the distribution of
fluctuations ¢ at different times

(7i)-
R. Arbel-Goren et al. Life (2018).
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@ Systems composed by a finite set of interacting
constituents, say N, are subject to fluctuations .

@ Fluctuations are endogenous, as stemming from the finite
size N.

© They fade away when N — co.

© Stochastic contributions can be studied with appropriate
tools.

© For the case at hand, the endogenous stochastic drive
results in a noisy perturbations around the deterministic
solution.

Is this the rule? Can we expect peculiar features to emerge
from the inherent stochasticity?
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: modeling the brain dynamics

@ A neuron is an excitable cell that processes information
through electrical and chemical signals.

@ Neurons come in a variety of shapes and morphologies
(excitatory and inhibitory neurons).

@ Neurons can be grouped in homologous families, referred
to as populations.

neuronal spiking

o oi oz o3 04 05 08 07 08 09 1

local field potential

01 02z 03 04 05 08 07 08 08 1
time [s)
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The Wilson-Cowan model
hy

WEI
Excitator () vs. inhibitor ( ) /

X = —agx+f(Weex - wgy + hg)
y = —ay+f(wex-wyy+h)
where:
@ wj, i,j = I, E are positive defined 1. The original model is
parameters. deterministic in nature.
° th r:l:‘lf fiystand forthe external 5 " g4 opagiic (birth/death)

versions also exist.
@ f(s)=1/(1+exp(-s))isa

. . ) 3. Role of endogenous
sigmoid function.

(finite size/volume)
fluctuations. )
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A minimal stochastic model.

Label X and Y individual excitatory and inhibitory elements.

Birth-death scheme .
Logic flow

fsx] fsy] a. Introduce Pj(1) to label
— X — Y the probability for the
x Lg y L 5 system to be in state

n=(ny,ny) attime t.

where: b. The dynamics of the
o s=r ( ny _l) system is governed by a
vV 2 master equation.
Ny 1 )
@ s,=r(-2-—). c. Perform a
S r( vV 2

_ Kramers-Moyal
@ r>0 is the only free parameter. expansion, 1/v/V acting

@ ny and ny identify the number as small parameter.
of elements of type X and Y.
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X = —X+f[—r(y—1)]+1[x+f(—r(y—— )]1/277)(

et plr ()]

@ stochastic non linear equations.

\<.
Il

@ multiplicative noise.
@ 1), and 1), are delta correlated Gaussian variables.

Deterministic limit, V — oo

The deterministic model admits a fixed point x* = y* = 1/2. The

linear stability analysis returns A = -1 + ’é
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Visualizing quasi-regular oscillations

Finite size corrections do matter: macroscopic order can
emerge as mediated by the microscopic disorder (inherent
granularity and stochasticity)
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Fluctuations and quasi-cycles

Linear noise approximation 04

o x(t)=x*+V12¢g il
y(B)=y*+V g % o
(*] éi=ZJij§j+’I]iWithi=1,2 Ej 02l

o

where 7;(t) is a Gaussian noise
with < 77,'(1')77/'(1") >=0;0(t - t).

Power spectral density matrix

2 2 _
Pi() =< E(@) (@) >= 3 3 7' ()om (07) 5 ()

I=1 m=1

where ¢,]-:—J,]-—iw5,-j
Fanelli et al. , Phys. Rev. E (2017).
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: stochastic circadian clocks.

A circadian clock is a biochemical oscillator which makes it
possible for the organism to adjust to the day-night cycle.
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: stochastic circadian clocks.

A circadian clock is a biochemical oscillator which makes it
possible for the organism to adjust to the day-night cycle.

Key properties:

@ Endogenous rhythmicity
when stimuli are lacking.

@ Susceptibility to external
stimuli which prompt
synchronization.

@ Ability to adjust to
temperature variation.
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: stochastic circadian clocks.

A circadian clock is a biochemical oscillator which makes it
possible for the organism to adjust to the day-night cycle.

Key properties:

@ Endogenous rhythmicity
when stimuli are lacking.

@ Susceptibility to external
stimuli which prompt
synchronization.

@ Ability to adjust to
temperature variation.

v

Cyanobacteria are among the simplest organisms to possess a
biological circadian clock.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.

@ Produce and release oxygen in the atmosphere
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.

@ Produce and release oxygen in the atmosphere
@ Fix nitrogen.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.

@ Produce and release oxygen in the atmosphere
@ Fix nitrogen.

Synechococcus el.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.

@ Produce and release oxygen in the atmosphere
@ Fix nitrogen.

Synechococcus el. Anabaena sp.
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Circadian clocks in cianobacteria

Cyanobacteria are unicellular or multicellular organisms. They
play a key role for life on Earth.

@ Produce and release oxygen in the atmosphere
@ Fix nitrogen.

Synechococcus el. Anabaena Sp.
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The core of the circadian clock in cyanobacteria is composed
by three proteins: KaiA, KaiB e KaiC.
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".

@ The different configurations of KaiC are termed
phosphoforms.
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".

@ The different configurations of KaiC are termed
phosphoforms.

@ KaiA and KaiB interact with
KaiC following an ordered
scheme which drives regular
oscillations in the concentration
of the different phosphoforms.
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".

@ The different configurations of KaiC are termed
phosphoforms.

@ KaiA and KaiB interact with
KaiC following an ordered
scheme which drives regular
oscillations in the concentration
of the different phosphoforms.

@ T=T-KaiC, D= ST-KaiC, S=
S-KaiC
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".

@ The different configurations of KaiC are termed
phosphoforms.

[Rust et al., Science,
2007]
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".

@ The different configurations of KaiC are termed
phosphoforms.

[Rust et al., Science,

2007]

&1 =pukur + ppkpr — drkru - dTKTD
bp =¢7krp + psksp — ppkor - Ppkps
s =pukys + dpKps — Psksy — Psksp

= [KaiC] - - ¢s
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Modeling the dynamics —

@ KaiC phosphorylates on sites T and S. Phosphorylation
modifies the structure of the protein with the inclusion of a
phosphate group PO;".

@ The different configurations of KaiC are termed
phosphoforms.

b1 =pukur + ppkor - drKTu — OTKID
bp =p7krp + Bsksp — ppkpT — Ppkps
bs =pukys + ppkps - bsksy — dsksp

kxy (ds) = Ky + K&y f(0s) \
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The idealized continuum limit

A linear stability analysis around the fixed point solution
¢* = (¢7. ¢p. d) vields the following scenario
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The idealized continuum limit

A linear stability analysis around the fixed point solution
¢* = (¢7. ¢p. d) vields the following scenario

Parameter plane (v, [KaiA])
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The idealized continuum limit

A linear stability analysis around the fixed point solution
¢* = (¢7. ¢p. d) vields the following scenario

Parameter plane (v, [KaiA]) Bifurcation diagram, ¢.
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Exploring different dynamical regimes

31
30
29

27 §

25

23
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Exploring different dynamical regimes

Ay = —
/=8, [KaiA]=1.2
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Exploring different dynamical regimes

’\/:8s

02
w12 *
0.22 %
¥ 119
0.18 1.18
o4

[KaiA] = 1.2

31

30

29

27 §

or(t)/[KaiC]

25

23

In region | the concentration of the phosphoforms of KaiC
converges to a fixed point (absence of circadian cycles).
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Exploring different dynamical regimes
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Exploring different dynamical regimes
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Y
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Exploring different dynamical regimes

31
1.23
30
1.22
29
1.21
28
— 12 —
5 g
= 27 &
i‘ 1.19 g
26
1.18
25
117
24
1.16
1.15 2
8 85 9 9.5 10
¥

In region Il the concentration of the phosphoforms of KaiC
displays regular oscillations (with circadian period).

~v=10, [KaiA]=1.2

Hr(t)/[KaiC
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Stochastic modeling

@ The system operates in a low copy number regime.
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Stochastic modeling

@ The system operates in a low copy number regime.

@ Endogenous noise as stemming from finite size corrections
do matter.
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Stochastic modeling

@ The system operates in a low copy number regime.

@ Endogenous noise as stemming from finite size corrections
do matter.

@ Model the stochastic dynamics of individual constituents:
n; stands for the number of element of species i=T,S,D
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Stochastic modeling

@ The system operates in a low copy number regime.

@ Endogenous noise as stemming from finite size corrections
do matter.

@ Model the stochastic dynamics of individual constituents:
n; stands for the number of element of species i=T,S,D

U/T\D
%
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Stochastic modeling

@ The system operates in a low copy number regime.

@ Endogenous noise as stemming from finite size corrections
do matter.

@ Model the stochastic dynamics of individual constituents:
n; stands for the number of element of species i=T,S,D

kus

T
/( \ phosphorylation UL T, U5 s
U D
S
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Stochastic modeling

@ The system operates in a low copy number regime.

@ Endogenous noise as stemming from finite size corrections
do matter.

@ Model the stochastic dynamics of individual constituents:
n; stands for the number of element of species i=T,S,D

T kur kus
/ phosphorylation U— T, U—S
U p de-phosphorylation T vy sy
S
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Stochastic modeling

@ The system operates in a low copy number regime.

@ Endogenous noise as stemming from finite size corrections
do matter.

@ Model the stochastic dynamics of individual constituents:
n; stands for the number of element of species i=T,S,D

/ X phosphorylation U T, U5 s
p de-phosphorylation T v,y sty
\ / inter-conversion T -2 D, S ko, p

p®LT DS
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Master equation

@ The state of the system is photographed by
n(t) = (nT7 Np, nS)'
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Master equation

@ The state of the system is photographed by
n(t) = (nT7 Np, nS)'

@ These are stochastic variables distributed as
P("? t) = P(”T? np, Ng; t)
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Master equation

@ The state of the system is photographed by
n(t) = (nT7 Np, nS)'

@ These are stochastic variables distributed as
P("? t) = P(”T? np, Ng; t)

@ The evolution of P(n, t) is governed by a master equation
of the general form:
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Master equation

@ The state of the system is photographed by
n(t) = (nT7 np, nS)'

@ These are stochastic variables distributed as
P(n,t) = P(nr,np, ng; t).

@ The evolution of P(n, t) is governed by a master equation
of the general form:

oP(n.t) _

o = X [T(nln)P(n', 1) T (rf|m)P(n, )]

n'+n
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Master equation

@ The state of the system is photographed by
n(t) = (nT7 np, nS)'

@ These are stochastic variables distributed as
P(n,t) = P(nr,np, ng; t).

@ The evolution of P(n, t) is governed by a master equation
of the general form:

oP(n.t) _

o = X [T(nln)P(n', 1) T (rf|m)P(n, )]

n'+n

@ Typical transition rates read:

. . k
(inter-conversion) T —> D
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Master equation

@ The state of the system is photographed by
n(t) = (nT7 np, nS)'

@ These are stochastic variables distributed as
P(n,t) = P(nr,np, ng; t).

@ The evolution of P(n, t) is governed by a master equation
of the general form:

oP(n.t) _

o = X [T(nln)P(n', 1) T (rf|m)P(n, )]

n'+n

@ Typical transition rates read:

n
(inter-conversion) T @» D T(nr-1,np+1|n) = WTkTD
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Master equation in its full complexity.

OP(n,t)

TR T(nlnt—1)P(ny-1;t) - T(ny +1|n)P(n, t)+

+T(nng-1)P(ng—1;t)-T(ng+1|n)P(n, t)+
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Master equation in its full complexity.

—apé’;’ D _T(niny - 1)P(nr - 1: )~ T(nr + 1jn)P(n, t)+
+T(nlng-1)P(ns—1;t)-T(ns+1|n)P(n, t)+
+T(ninr+1)P(nr+1;t) - T(nr -1|n)P(n,t)+

+T(nng+1)P(ng+1;t)-T(ng-1|n)P(n,t)+
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Master equation in its full complexity.

_apg;, D _T(niny - 1)P(nr - 1: )~ T(nr + 1jn)P(n, t)+
+T(nlng-1)P(ns—1;t)-T(ns+1|n)P(n, t)+
+T(ninr+1)P(nt+1;t) - T(nr -1|n)P(n, t)+
+T(nng+1)P(ng+1;t)-T(ng-1|n)P(n,t)+

+T(nint+1,np-1)P(nr+1,np—1;t) -T(nr—-1,np +1|n)P(n, t)+

+T(nlnp-1,ng+1)P(np—-1,ng+1;t) -T(np+1,ns—1|n)P(n, t)+
+T(ninr-1,np+1)P(nr-1,np+1;t)-T(nr+1,np-1|n)P(n, t)+
+T(nlnp+1,ng—1)P(np+1,ng-1;t) -T(np-1,ns+1|n)P(n,t)
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: inside.
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: inside.

~v=10
[KaiA]=1.2

[KaiA]
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: inside.

[KaiA]

~v=10
[KaiA]=1.2
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: outiside.

v=28
[KaiA]=1.2
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Stochastic simulations (Gillespie algorithm)

One realization of the stochastic dynamics: outiside.

v=28
[KaiA]=1.2

50 100 150 200 250 300 350 400
t

R. Arbel-Goren et al., (2020)
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Comparing with the experiments -
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Comparing with the experiments -
Fluorescence activity in
Synechococcus el.

[In collaboration with J. Stavans
group @Weizmann]
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Comparing with the experiments -

Power spectrum

Fluorescence activity in
Synechococcus el.

[KaiA]

[In collaboration with J. Stavans
group @Weizmann]
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@ Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.

@ Endogenous noise can also seed regular patterns in
space.

Deterministic patterns

A

Stochastic patterns

>
>

p
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@ Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.
@ Endogenous noise can also seed regular patterns in

space.
Arabidopsis thaliana -

Deterministic patterns

\ A

Stochastic patterns

P P @
R. Arbel-Goren et al. Life (2018). "
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@ Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.
@ Endogenous noise con also seed regular patterns in

0 T . . T
000 005 010 015 0.20
k

M. C. Sainz et al., in preparation (2020).
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@ Regular oscillations in time can emerge from demographic
noise: order is generated from disorder.

@ Endogenous noise con also seed regular patterns in
space.

Parameter Range

L O

. Simulated Radial Power Spectrum

° power spectrum|
— best fit 2.4204

3
3

3

3

CY

Power/Wavenumber (dBirad/px)

Power/Wavenumber (dB/rad/grid)
3

elp

0° 107 107 10’ 107 107 1
Normalized Wavenumber k (1 rad/px) Normalized Wavenumber k (i rad/px)

Fig. 4. Spectral analysis and parameter analysis. (4) Pattern-forming regimes in parameter space and estimated parameters for our system. Parameters
above the green surface of neutral stochastic stability can form stochastic patterns, and parameters above the biue surface of deterministic neutral stability
can form deterministic Turing patterns. The ratio of the diffusion i iy, the ratio of ion rate to production rate d/p, and the ratio of
production rates are estimated for our system by the yellow ellpsoid. The parameters for our system are mostly in the regime where stochastic patterns
form and outside the region where deterministic Turing patterns form. Exampl are shown for drawn from a deterministic
parameter region with D, /D,, = 100 (Upper Right) and a stochastic region with D, /D,, =21.6 (Lower Right). (B) Radial power spectrum of green fluores-
cence and best fit power law tail with an exponent of —2.3 +0.2. (C) Radial power spectrum for eight trials of our stochastic simulation, their mean, and
the best fit power law tail

D. Karig et al., PNAS (2018).



Conclusions

@ Spontaneous drive to self-organization in Nature.

@ Regular motifs in space and time originate from a large
sea of interacting individual constituents.

@ Finite size corrections yield ordered macroscopic patterns.

@ Stochastic patterns on heterogenous spatial supports
(networks, multiplex, hypergraphs).
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Scheduled lectures

Auditorium: "Salle de Conférences du Dpt de Math" (E25) on the second floor

= Stochastic processes
Wednesday February the 5th, 4:30 pm 6:30 pm

=n Master equation
Thursday February the 6th, 4:30 pm 6:30 pm

m Impact of the noise
Tuesday February the 18th, 4:30 pm 6:30 pm

m Spatially extended systems
Wednesday February the 19th, 4:30 pm 6:30 pm
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