# Forecasting

#### Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne





# Outline

- Introduction
- 2 Aggregation
- Forecasting
- Price optimization
- Confidence intervals
- Willingness to pay
- Substitution rate



# Introduction

#### Behavioral model

$$P(i|x_n, C_n; \theta)$$

What do we do with it?

#### Note

It is always possible to characterize the choice set using availability variables, included into  $x_n$ . So the model can be written

$$P(i|x_n, C; \theta) = P(i|x_n; \theta)$$

#### Aggregate shares

- Prediction about a single individual is of little use in practice.
- Need for indicators about aggregate demand.
- Typical application: aggregate market shares.

# Aggregation

#### **Population**

- Identify the population T of interest (in general, already done during the phase of the model specification and estimation).
- Obtain  $x_n$  and  $C_n$  for each individual n in the population.
- The number of individuals choosing alternative *i* is

$$N_T(i) = \sum_{n=1}^{N_T} P_n(i|x_n;\theta).$$

• The share of the population choosing alternative *i* is

$$W(i) = \frac{1}{N_T} \sum_{n=1}^{N_T} P(i|x_n; \theta) = \mathbb{E}\left[P(i|x_n; \theta)\right].$$

# Aggregation

| Population     |                       | Total                 |       |                       |       |
|----------------|-----------------------|-----------------------|-------|-----------------------|-------|
| Гориаціон      | 1                     | 2                     | • • • | J                     | TOLAI |
| 1              | $P(1 x_1;\theta)$     | $P(2 x_1;\theta)$     | • • • | $P(J x_1;\theta)$     | 1     |
| 2              | $P(1 x_2;\theta)$     | $P(2 x_2;\theta)$     | • • • | $P(J x_2;\theta)$     | 1     |
| :              | :                     | :                     | :     | :                     | •     |
| N <sub>T</sub> | $P(1 x_{N_T};\theta)$ | $P(2 x_{N_T};\theta)$ |       | $P(J x_{N_T};\theta)$ | 1     |
| Total          | $N_T(1)$              | $N_T(2)$              |       | $N_T(J)$              | $N_T$ |

# Distribution

#### Data

- Assume the distribution of  $x_n$  is available.
- $x_n = (x_n^C, x_n^D)$  is composed of discrete and continuous variables.
- $x_n^C$  distributed with pdf  $p^C(x)$ .
- $x_n^D$  distributed with pmf  $p^D(x)$ .

#### Market shares

$$W(i) = \sum_{x^{D}} \int_{x^{C}} P_{n}(i|x^{C}, x^{D}) p^{C}(x^{C}) p^{D}(x^{d}) dx^{C} = E[P_{n}(i|x_{n}; \theta)],$$



# Aggregation methods

#### Issues

- None of the above formulas can be applied in practice.
- No full access to each  $x_n$ , or to their distribution.
- Practical methods are needed.

#### Practical methods

- Use a sample.
- It must be revealed preference data.
- It may be the same sample as for estimation.

# Sample enumeration

# Stratified sample

- Population is partitioned into homogenous segments.
- Each segment has been randomly sampled.
- ullet Let n be an observation in the sample belonging to segment g
- Let  $\omega_g$  be the weight of segment g, that is

$$\omega_{\rm g} = \frac{{\it N}_{\rm g}}{{\it S}_{\rm g}} = \frac{\# \ {\rm persons \ in \ segment \ } g \ {\rm in \ population}}{\# \ {\rm persons \ in \ segment \ } g \ {\rm in \ sample}}$$

• The number of persons choosing alt. i is estimated by

$$\widehat{N}(i) = \sum_{n \in \text{sample}} P(i|x_n; \theta) \sum_{g} \omega_g I_{ng} = \sum_{n} \omega_{g(n)} P(i|x_n; \theta)$$

where  $I_{ng} = 1$  if individual n belongs to segment g, 0 otherwise, and g(n) is the segment containing n.

# Sample enumeration

#### Predicted shares

$$\widehat{W}(i) = \sum_{n \in \text{sample}} P(i|x_n; \theta) \sum_{g} \frac{N_g}{N_T} \frac{1}{S_g} I_{ng} = \frac{1}{N_T} \sum_{n} \omega_{g(n)} P(i|x_n; \theta)$$

#### Comments

- Consistent estimate.
- Estimate subject to sampling errors.
- Policy analysis: change the values of the explanatory variables, and apply the same procedure.

# Market shares per market segment

- Let *h* be a segment of the population.
- Let  $I_{nh} = 1$  if individual n belongs to this segment, 0 otherwise.
- Number of persons of segment h choosing alternative i

$$\widehat{N}_h(i) = \sum_n \omega_{g(n)} P(i|x_n; \theta) I_{nh}$$

Market share of alternative i in segment h

$$\widehat{W}_h(i) = \frac{\sum_n \omega_{g(n)} P(i|x_n; \theta) I_{nh}}{\sum_n \omega_{g(n)} I_{nh}}.$$

#### Sample

- Revealed preference data
- Survey conducted between 2009 and 2010 for PostBus
- Questionnaires sent to people living in rural areas
- Each observation corresponds to a sequence of trips from home to home.
- Sample size: 1723

#### Model: 3 alternatives

- Car
- Public transportation (PT)
- Slow mode



|           |                                                                                    |          | Robust     |        |                 |
|-----------|------------------------------------------------------------------------------------|----------|------------|--------|-----------------|
| Parameter |                                                                                    | Coeff.   | Asympt.    |        |                 |
| number    | Description                                                                        | estimate | std. error | t-stat | <i>p</i> -value |
| 1         | Cte. (PT)                                                                          | 0.977    | 0.605      | 1.61   | 0.11            |
| 2         | Income 4-6 KCHF (PT)                                                               | -0.934   | 0.255      | -3.67  | 0.00            |
| 3         | Income 8-10 KCHF (PT)                                                              | -0.123   | 0.175      | -0.70  | 0.48            |
| 4         | Age 0-45 (PT)                                                                      | -0.0218  | 0.00977    | -2.23  | 0.03            |
| 5         | Age 45-65 (PT)                                                                     | 0.0303   | 0.0124     | 2.44   | 0.01            |
| 6         | Male dummy (PT)                                                                    | -0.351   | 0.260      | -1.35  | 0.18            |
| 7         | Marginal cost [CHF] (PT)                                                           | -0.0105  | 0.0104     | -1.01  | 0.31            |
| 8         | Waiting time [min], if full time job (PT)                                          | -0.0440  | 0.0117     | -3.76  | 0.00            |
| 9         | Waiting time [min], if part time job or other occupation (PT)                      | -0.0268  | 0.00742    | -3.62  | 0.00            |
| 10        | Travel time [min] $\times \log(1 + \text{distance[km]}) / 1000$ , if full time job | -1.52    | 0.510      | -2.98  | 0.00            |
| 11        | Travel time [min] $\times \log(1 + \text{distance[km]}) / 1000$ , if part time job | -1.14    | 0.671      | -1.69  | 0.09            |
| 12        | Season ticket dummy (PT)                                                           | 2.89     | 0.346      | 8.33   | 0.00            |
| 13        | Half fare travelcard dummy (PT)                                                    | 0.360    | 0.177      | 2.04   | 0.04            |
| 14        | Line related travelcard dummy (PT)                                                 | 2.11     | 0.281      | 7.51   | 0.00            |
| 15        | Area related travelcard (PT)                                                       | 2.78     | 0.266      | 10.46  | 0.00            |
| 16        | Other travel cards dummy (PT)                                                      | 1.25     | 0.303      | 4.14   | 0.00            |
|           |                                                                                    |          |            |        |                 |

|           |                                                  |          | Robust     |        |                 |
|-----------|--------------------------------------------------|----------|------------|--------|-----------------|
| Parameter |                                                  | Coeff.   | Asympt.    |        |                 |
| number    | Description                                      | estimate | std. error | t-stat | <i>p</i> -value |
| 17        | Cte. (Car)                                       | 0.792    | 0.512      | 1.55   | 0.12            |
| 18        | Income 4-6 KCHF (Car)                            | -1.02    | 0.251      | -4.05  | 0.00            |
| 19        | Income 8-10 KCHF (Car)                           | -0.422   | 0.223      | -1.90  | 0.06            |
| 20        | Income 10 KCHF and more (Car)                    | 0.126    | 0.0697     | 1.81   | 0.07            |
| 21        | Male dummy (Car)                                 | 0.291    | 0.229      | 1.27   | 0.20            |
| 22        | Number of cars in household (Car)                | 0.939    | 0.135      | 6.93   | 0.00            |
| 23        | Gasoline cost [CHF], if trip purpose HWH (Car)   | -0.164   | 0.0369     | -4.45  | 0.00            |
| 24        | Gasoline cost [CHF], if trip purpose other (Car) | -0.0727  | 0.0224     | -3.24  | 0.00            |
| 25        | Gasoline cost [CHF], if male (Car)               | -0.0683  | 0.0240     | -2.84  | 0.00            |
| 26        | French speaking (Car)                            | 0.926    | 0.190      | 4.88   | 0.00            |
| 27        | Distance [km] (Slow modes)                       | -0.184   | 0.0473     | -3.90  | 0.00            |

#### Summary statistics

Number of observations = 1723

Number of estimated parameters = 27 
$$\mathcal{L}(\beta_0) = -1858.039$$

$$\mathcal{L}(\hat{\beta}) = -792.931$$

Number or estimated parameters = 
$$2I$$
  
 $\mathcal{L}(\beta_0) = -1888.038$   
 $\mathcal{L}(\beta) = -792.931$   
 $-2[\mathcal{L}(\beta_0) - \mathcal{L}(\hat{\beta})] = 2130.215$   
 $\rho^2 = 0.573$   
 $\bar{\rho}^2 = 0.559$ 

$$\rho^2 = 0.573$$

$$\bar{\rho}^2 = 0.559$$



|            | Male   | Female | Unknown gender | Population |
|------------|--------|--------|----------------|------------|
| Car        | 64.96% | 60.51% | 70.88%         | 62.8%      |
| PT         | 30.20% | 32.52% | 25.59%         | 31.3%      |
| Slow modes | 4.83%  | 6.96%  | 3.53%          | 5.88%      |

# Forecasting

#### Procedure

- Scenarios: specify future values of the variables of the model.
- Recalculate the market shares.

#### Market shares

|            |       | Increase of the cost of gasoline |       |       |       |       |       |
|------------|-------|----------------------------------|-------|-------|-------|-------|-------|
|            | Now   | 5%                               | 10%   | 15%   | 20%   | 25%   | 30%   |
| Car        | 62.8% | 62.5%                            | 62.2% | 61.8% | 61.5% | 61.2% | 60.8% |
| PT         | 31.3% | 31.6%                            | 31.9% | 32.2% | 32.5% | 32.8% | 33.1% |
| Slow modes | 5.88% | 5.90%                            | 5.92% | 5.95% | 5.97% | 6.00% | 6.02% |

# Forecasting



Scenario: increase of the cost of gasoline

Public transportation Slow modes

# Price optimization

Optimizing the price of product i is solving the problem

$$\max_{p_i} p_i \sum_{n \in \text{sample}} \omega_{g(n)} P(i|x_n, p_i; \theta)$$

#### Notes:

- It assumes that everything else is equal
- In practice, it is likely that the competition will also adjust the prices

# Illustrative example

A binary logit model with

$$V_1 = \beta_p p_1 - 0.5$$

$$V_2 = \beta_p p_2$$

so that

$$P(1|p) = \frac{e^{\beta_p p_1 - 0.5}}{e^{\beta_p p_1 - 0.5} + e^{\beta_p p_2}}$$

Two groups in the population:

- Group 1:  $\beta_p = -2$ ,  $N_s = 600$
- Group 2:  $\beta_p = -0.1$ ,  $N_s = 400$

Assume that  $p_2 = 2$ .



# Illustrative example



# Case study: interurban mode choice in Switzerland

#### Scenario

- A uniform adjustment of the marginal cost of public transportation is investigated.
- The analysis ranges from 0% to 700%.
- What is the impact on the market share of public transportation?
- What is the impact of the revenues for public transportation operators?

# Case study: interurban mode choice in Switzerland



# Case study: interurban mode choice in Switzerland

#### Comments

- Typical non concavity of the revenue function due to taste heterogeneity.
- In general, decision making is more complex than optimizing revenues.
- Applying the model with values of x very different from estimation data may be highly unreliable.

# Confidence intervals

#### Model

$$P(i|x_n,p_i;\theta)$$

- ullet In reality, we use  $\widehat{ heta}$ , the maximum likelihood estimate of heta
- ullet Property: the estimator is normally distributed  $\mathcal{N}(\widehat{\theta},\widehat{\Sigma})$

#### Calculating the confidence interval by simulation

- Draw R times  $\tilde{\theta}$  from  $N(\hat{\theta}, \hat{\Sigma})$ .
- For each  $\tilde{\theta}$ , calculate the requested quantity (e.g. market share, revenue, etc.) using  $P(i|x_n, p_i; \tilde{\theta})$
- Calculate the 5% and the 95% quantiles of the generated quantities.
- They define the 90% confidence interval.

# Case study: confidence intervals (500 draws)



# Case study: confidence intervals (500 draws)



# Confidence interval

#### Model

$$P(i|x_n, p_i; \widehat{\theta})$$

- There are also errors in the  $x_n$ .
- If the distribution of  $x_n$  is known, draw from both  $x_n$  and  $\theta$ .
- Apply the same procedure.

#### Context

- If the model contains a cost or price variable,
- it is possible to analyze the trade-off between any variable and money.
- It reflects the willingness of the decision maker to pay for a modification of another variable of the model.
- Typical example in transportation: value of time

#### Value of time

Price that travelers are willing to pay to decrease the travel time.

#### Definition

- Let c<sub>in</sub> be the cost of alternative i for individual n.
- Let  $x_{in}$  be the value of another variable of the model (travel time, say).
- Let  $V_{in}(c_{in}, x_{in})$  be the value of the utility function.
- Consider a scenario where the variable under interest takes the value  $x'_{in} = x_{in} + \delta^{x}_{in}$ .
- We denote by  $\delta^c_{in}$  the additional cost that would achieve the same utility, that is

$$V_{in}(c_{in} + \delta_{in}^c, x_{in}) = V_{in}(c_{in}, x_{in} + \delta_{in}^x).$$

ullet The willingness to pay is the additional cost per unit of x, that is

$$\delta_{in}^{c}/\delta_{in}^{x}$$

#### Continuous variable

- If  $x_{in}$  is continuous,
- if  $V_{in}$  is differentiable in  $x_{in}$  and  $c_{in}$ ,
- invoke Taylor's theorem:

$$V_{in}(c_{in} + \delta_{in}^c, x_{in}) \approx V_{in}(c_{in}, x_{in}) + \delta_{in}^c \frac{\partial V_{in}}{\partial c_{in}}(c_{in}, x_{in})$$

$$V_{in}(c_{in}, x_{in} + \delta_{in}^{x}) \approx V_{in}(c_{in}, x_{in}) + \delta_{in}^{x} \frac{\partial V_{in}}{\partial x_{in}}(c_{in}, x_{in})$$

ullet Therefore, for small  $\delta$ 's, the willingness to pay is defined as

$$\frac{\delta_{in}^c}{\delta_{in}^x} = -\frac{(\partial V_{in}/\partial x_{in})(c_{in}, x_{in})}{(\partial V_{in}/\partial c_{in})(c_{in}, x_{in})}$$



# Linear utility function

• If  $x_{in}$  and  $c_{in}$  appear linearly in the utility function, that is

$$V_{in}(c_{in}, x_{in}) = \beta_c c_{in} + \beta_x x_{in} + \cdots$$

then the willingness to pay is

$$\frac{\delta_{in}^{c}}{\delta_{in}^{x}} = -\frac{(\partial V_{in}/\partial x_{in})(c_{in}, x_{in})}{(\partial V_{in}/\partial c_{in})(c_{in}, x_{in})} = -\frac{\beta_{x}}{\beta_{c}}$$

# Value of time

- An increase of travel time must be compensated by a decrease of cost.
- Therefore, the value of time is defined as

$$VOT_{in} = \delta_{in}^{c}/\delta_{in}^{t}$$

where  $\delta_{in}^c$ ,  $\delta_{in}^t \geq 0$  and

$$V_{in}(c_{in} - \delta_{in}^c, t_{in}) = V_{in}(c_{in}, t_{in} + \delta_{in}^x).$$

• If V is differentiable, we have

$$VOT_{in} = \frac{(\partial V_{in}/\partial t_{in})(c_{in}, t_{in})}{(\partial V_{in}/\partial c_{in})(c_{in}, t_{in})}$$

• If V is linear in these variables, we have

$$VOT_{in} = \frac{\beta_t}{\beta_c}$$



# Case study: value of time for car drivers



# Case study: value of time for car drivers (nonzero)



# Case study: value of time for public transportation



# Case study: value of time for public transportation (nonzero)



# Substitution rate

#### Definition

- Let  $c_{in}$  be the cost of alternative i for individual n.
- Let  $x_{in}$  be the value of another variable of the model (travel time, say).
- Let  $P(i|c_{in},x_{in})$  be the choice probability.
- Consider a scenario where the variable under interest takes the value  $x'_{in} = x_{in} + \delta^{x}_{in}$ .
- We denote by  $\delta_{in}^c$  the additional cost that would achieve the same utility, that is

$$P(i|c_{in} + \delta_{in}^c, x_{in}) = P(i|c_{in}, x_{in} + \delta_{in}^x).$$

• The substitution rate is the additional cost per unit of x, that is

$$\delta_{in}^{c}/\delta_{in}^{x}$$

# Substitution rate

#### Continuous variable

When  $x_{in}$  is continuous, we have a similar result as for willingness to pay

$$\frac{\delta_{in}^{c}}{\delta_{in}^{x}} = -\frac{\partial P(i|c_{in}, x_{in})/\partial x_{in}}{\partial P(i|c_{in}, x_{in})/\partial c_{in}}$$

Equivalent to willingness to pay when  $x_{in}$  appears only in  $V_{in}$ 

$$\frac{\partial P(i|c_{in},x_{in})}{\partial x_{in}} = \sum_{i \in \mathcal{C}_n} \frac{\partial P(i|c_{in},x_{in})}{\partial V_{jn}} \frac{\partial V_{jn}}{\partial x_{in}} = \frac{\partial P(i|c_{in},x_{in})}{\partial V_{in}} \frac{\partial V_{in}}{\partial x_{in}}$$

$$\frac{\partial P(i|c_{in},x_{in})}{\partial c_{in}} = \sum_{i \in \mathcal{C}} \frac{\partial P(i|c_{in},x_{in})}{\partial V_{jn}} \frac{\partial V_{jn}}{\partial c_{in}} = \frac{\partial P(i|c_{in},x_{in})}{\partial V_{in}} \frac{\partial V_{in}}{\partial c_{in}}$$



# Disaggregate elasticities

#### Point vs. arc

- Point: marginal rate
- Arc: between two values

#### Direct vs. cross

- Direct: wrt attribute of the same alternative
- Cross: wrt attribute of another alternative

|        | Point                                                             | Arc                                                                                                 |
|--------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Direct | $E_{x_{ink}}^{P_n(i)} = \frac{\partial P_n(i)}{\partial x_{ink}}$ | $\frac{x_{ink}}{P_n(i)} \frac{\Delta P_n(i)}{\Delta x_{ink}} \frac{x_{ink}}{P_n(i)}$                |
| Cross  | $E_{x_{jnk}}^{P_n(i)} = \frac{\partial P_n(i)}{\partial x_{jnk}}$ | $\frac{x_{jnk}}{P_n(i)} \left  \frac{\Delta P_n(i)}{\Delta x_{jnk}} \frac{x_{jnk}}{P_n(i)} \right $ |

# Aggregate elasticities

#### Population share

$$W(i) = \frac{1}{N_T} \sum_{n=1}^{N_T} P(i|x_n)$$

#### Aggregate elasticity

$$E_{x_{jk}}^{W(i)} = \frac{\partial W(i)}{\partial x_{jk}} \frac{x_{jk}}{W(i)}$$

$$= \sum_{n=1}^{N_T} \frac{P_n(i)}{P_n(i)} \frac{\partial P_n(i)}{\partial x_{jk}} \frac{x_{jk}}{\sum_{n=1}^{N_T} P_n(i)}$$

$$= \sum_{n=1}^{N_T} \frac{P_n(i)}{\sum_{n=1}^{N_T} P_n(i)} E_{x_{ink}}^{P_n(i)}.$$

# Case study: elasticity of travel time (PT)



Share of the population

500

# Case study: elasticity of travel time (PT, non zero)



Share of the population

Forecasting

#### Concept

- Difference between what a consumer is willing to pay for a good and what she actually pays for the good
- Area under the demand curve and above the market price

#### Discrete choice

- demand characterized by the choice probability
- role of price taken by the utility
- utility can always be transformed into monetary units



 $P_n(i)$ 

#### Binary logit

$$\int_{V_i^1}^{V_i^2} P(i|V_i, V_j) dV_i = \int_{V_i^1}^{V_i^2} \frac{e^{\mu V_i}}{e^{\mu V_i} + e^{\mu V_j}} dV_i 
= \frac{1}{\mu} \ln(e^{\mu V_i^2} + e^{\mu V_j}) - \frac{1}{\mu} \ln(e^{\mu V_i^1} + e^{\mu V_j}).$$



#### Generalization

$$\sum_{i\in\mathcal{C}}\int_{V^1}^{V^2}P(i|V)dV_i.$$

If the choice model has equal cross derivatives, that is

$$\frac{\partial P(i|V,C)}{\partial V_i} = \frac{\partial P(j|V,C)}{\partial V_i}, \ \forall i,j \in C,$$

the integral is path independent.

# Logit

$$\sum_{i \in \mathcal{C}} \int_{V^1}^{V^2} P(i|V) dV_i = \frac{1}{\mu} \ln \sum_{i \in \mathcal{C}^2} e^{\mu V_j^2} - \frac{1}{\mu} \ln \sum_{i \in \mathcal{C}^1} e^{\mu V_j^1}.$$