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Dirac synchronisation
« Phenomenology and Theory

Global topological synchronisation and Master Stability Function

» Global synchronisation on graphs
* Global synchronisation on simplicial and cell complexes

> Turing patterns coupled by the Dirac operator

Addendum:
> Triadic percolation and non-linear dynamics of the giant component



Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Kuramoto model on a

network

The Kuramoto model
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In the Standard Kuramoto model the
free dynamics
of the synchronised state

iIs uniform over the whole
(connected) network




The Topological Kuramoto model

O12)

How to define
the Topological Kuramoto model
coupling higher dimensional
topological signals?




Topological Kuramoto model

¢[1,2]

0,

v

Standard Kuramoto model Topological Higher-order Kuramoto model
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0 = ® — 0B sinB,0 ¢ = — 0By, sinB) b — 0B, sinB, o,

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



The Topological Kuramoto Model

Learns Topology



In the Topological Kuramoto model the free
dynamics of the synchronized state
Is localised on the

n-dimensional holes

d(“harm9 ¢> A

At — <uharm’ w

The free dynamics is localised on harmonic components




Dirac synchronisation

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called

~




Dirac operator on graph

Dirac operator on a graph

0 B

Action of the Dirac operator on
the topological spinor

0 B
DY — [1] <X) _
B, 0 )\




Topological synchronisation
on nodes and links

Topological synchronization of nodes and links of a network

— : T
0 = w — 0B sinB,0

Can be written in terms of the Dirac operator as

® = Q — 6D sin DD,

where




Normalised Dirac operator on a network

R 0 B
o < [1]>

. D D[ -1 _ —1
with B[l] — G[O]B[I]G[l] _ KO B[l]

F. Baccini, F. Geraci and G. Bianconi (2022)



Modified dynamics using the
normalised Dirac operator

Topological synchronization of nodes and links of a network can
be modified by considering the weighted coboundary operator
and its dual

that can be written in terms of the normalized Dirac operator as

d=Q—6DsinDdP.




Dirac Synchronization

Dirac Synchronization allows to couple \
locally and topologically signals defined on

(o ) O
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nodes and links. i 3
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Dirac synchronisation obeys

® = Q — 6D sin((D — yzD?)®)

where
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L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022)




In the Dirac Synchronization the free dynamics
of the synchronized state is localised on the
links around

]l -dimensional holes (since we are in a network)

d(“harm9 ¢> A
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The free dynamics is localised on harmonic components




Dirac synchronisation ¢ = 0.5




Dirac synchronisation 0 = 5




Dirac synchronisation o = 10
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Component-wise expression
of the dynamical equations

The expression for the dynamical equations of Dirac synchronization
read

which can be also expressed as
) -1 A RT T k-1

119/2),

. 1
— 2 T




Projections

The phases of the links can be projected onto the nodes by defining
w =K;'B, ¢
@ = K;'B &
And considering the projected equations
0 = w — oK 'Bsin (B'(0 + zy)/2)),

1. .
V=0 - O'ELO sin (y/— zL00/2>,

& -1 T
Where L[O] = Ko B[I]B[l]




Coupled phases

Let us introduced the coupled nodes and link phases defined as
a.= 0.+ zy,)/2,
p,=z20,—0)2 -y,

Where

The dynamical equations for read then

N

0 = w — oK;'Bsin (BT(0 + zy)/2)),

1, X
W= - o Lsin (1// - zL00/2>,




Node and links are
“entangled ”

~

Node and links signals are
entangled.
. 1 [
The order parameters depend on linear R |— 0. JJUCLS
combinations of nodes and link signals lere Y i
1y 0 e
X, =Rpele=—3 e “
r=1 | e
. 1 & y R IOV Saa i
X,=Re=—Y e 5 i
- - - - - 0
The synchronization transition is
discontinuous )

L. Calmon, J. Restrepo, J.J. Torres and G. Bianconi (2022)



Equations for the angles a, f#

 The closed equations for the angles a,, . are given by




Dependence on z
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Upper synchronisation
threshold

In Dirac synchronisation 1 S o N= 1250
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Linearised Dynamics

The linearised dynamics is dictated by the Dirac operator

® = Q — 6(D? + zyD> D,

Let us now decompose @,  on the eigenvectors of the Dirac
operator W, obtaining

(I)=ZC/1W/1 Q=2a)/1W/1
A A



Linearised Dynamics

The harmonic component of the signal oscillates freely

VaN
Charmonic — Qharmonic

The other modes freeze asymptotically at a stable focus in time and

obey
GN_ (2N _ (¥ -\ (G
¢_; @ A3 A7 €4

Where .+ 0 indicates a positive eigenvalue of the Dirac operator



Linearised Dynamics
(continuation)

The dynamical equation for the harmonic mode

has solution

Charm(t) — Charm(o) + a)harmt
Therefore the harmonic modes

undergo an unperturbed motion



Linearised Dynamics
(continuation)

The dynamical equation for the other modes

has solution
C,(1
< A )> =A(t)< 1.) +B(t)<1>
c_;() —1 1
with
A(f) = w,; + ia.)_l (1 _ e—a(/1+iz/13)t) + A(0) p—0UHZAN)L
20(A? + 1zA3)
w; —1w_, ( —a(/l—iz/13)t) —6(i—izA )
B@) = 1 — + B(0
= e vy \ ¢ (O)e

Therefore while the non-harmonic modes display a stable focus.



Dirac Synchronization
Is rhythmic

One of the two complex order parameters
develops spontaneous low frequency rhythms
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Classification of phases

In Dirac synchronisation each node

1.0 is assigned to phases a,, 5, each
node can be classified in four
0.5 classes:
<
£ 00 e Both a,, f, frozen
7]
05/ * a, frozen while f, drifting
%6 w04 202 o0 o2 o4 os e «drifting while S, frozen

Im( Xae'ia)

Both a,, . drifting
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approximated predicted phase diagram
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Dependence on z comparison with

theory on fully connected network
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Dirac synchronisation on
Poisson networks

——Forward
—<— Backward "4
—Theory [#




Dirac synchronisation on
C.elegans
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Global synchronisation of
topological signals on
simplicial and cell complexes



Further Topological and
Combinatorial properties

of higher-order networks



Cell complexes

(a) (b)

(c) (d) (e)

ADIA S A

(a) (b) (c) (d) (e)




Boundary matrix of a cell complex

Example

. [1,2] [1,3] [3.,4] [2,4] [1,2,4,3]
The boundary matrix of a cell 1 -1 0 0 [1.2)
complex has matrix elements Lo 0 -1, By=[13]
0 1 -1 0 [3,4]
0 0 1 1 [2,4]

B[m](a;n—l, a;n)

otherwise




Geometrical properties
of simplicial complexes



m-connected components

A Simplicial complex




Generalized degree

The generalized degree k., (@)of a m-face «

is given by the number

of m’-dimensional simplices incident to the m-face a.

kz,o([r])

[1]
(2]
[3]
[4]
[5]
[6]

—_ N = R =W

[r,s]

k2,1([r’ S])

[1,2]
[1,3]
[1,4]
[1,5]
[2,3]
[3,4]
[3,5]
[3,6]
[5,6]

i \® B e e e N e Y )



Incidence number

To each (d-1)-face a we associate the

incidence number

Ny = kgq-1(a) =1

2

6
[Bianconi & Rahmede (2016)]

(i, ))

S
=
<,
=
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(1.4)
(1.5)
2.3)
(3.4)
(3.5)
(3.6)
(5.6)
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Discrete manifolds

COMBINATORIAL CONDITIONS FOR DISCRETE MANIFOLDS

A discrete manifold M of dimension d is a pure simplicial complex that
satisfies the following two conditions:

itis (d — 1)-connected;

every two d-simplices @, @’ belonging to the simplicial complex K
either overlap on a (d — 1)-face of K, i.e. a Na’ € S4_1(K) or do not
overlap,i.e. a Na’ = 0.

all its (d — 1)-faces « have an incidence number n, € {0, 1}.



Discrete manifolds

If n, takes only values », e (0,1}
each (d-1)-face is incident at most to two d-
dimensional simplices.

NOT A MANIFOLD MANIFOLD



Example key manifolds and
their Betti numbers

¢ ¢ ¥

n-dimensional hypersphere  n-dimensional torus (cell complex)  n-dimensional cylider

Betti numbers Betti numbers Betti numbers

Po=Pu1=1 B, = n—1 Po=Puo=1
P,=0forO<k<n-—1 k= k p.=0fork #0k#n—2



Global synchronisation
on graphs



Uncoupled dynamics of
iIdentical node oscillators

Consider coupled identical oscillators defined on the nodes,
captured by the 0-cochain X € CY with value X, € R4 on

each node i .

In absence of interactions these nodes obey the same
dynamics
dx

L =f(x
o (x,)

with arbitrary non-linear function f(x) .




Global synchronisation
on graphs

Consider the coupling of the oscillators implemented with the
graph Laplacian leading to the coupled dynamics

= f(x,) — 02 [Loy],s (X))
s

dx,
dt

with arbitrary non-linear functions f(x), h(x).

The global synchronisation is a state in which

X, =X, Vr,s € Qy(H)



Global synchronisation
state of topological signals

The global synchronisation is a state in which

X, =X, Vr,s € Qy(H)

The coupled dynamics

dx,
L= 1(x,) - azﬁ: [Loy],s B(X,)

admits always a global synchronisation state in which all the node

haves the same dynamics.

In fact the harmonic eigenvector of the graph Laplacian is constant
uharm x 1




Synchronised state

The globally synchronised state X, = x*(f) Vr € Qy(K).

Satisfies the dynamics

dx*
— =f(x*
7 (x™)

l.e. it describes a stationary state of the coupled oscillators.

Under which conditions is this solution stable for the
coupled oscillators?




Master Stability Function
for graphs

The Master Stability Function establishes the dynamical
conditions ensuring the stability of global synchronisation.

It depends on the non-zero spectrum of the graph

Laplacian.

It is based on an expansion around a stable solution of the
uncoupled dynamics.




Master Stability Function
for graphs

Expanding for §X, = X, — X* we obtain

dox,

N
dr J{(x*)ox, — o Z Lygy(r, )In(x™)0x,

s=1

This equation can be projected on the eigenmodes #; of the graph
Laplacian obtaining

dn,
dt

= [Jx*) — 023y (xM)]

Therefore the synchronised state is stable if the maximum Lyapunov
exponent of the above equation obeys A, (1) < 0V

max



Global synchronisation

of higher-order topological
signals



Uncoupled dynamics of
topological signals

Consider coupled identical oscillators defined on the n-simplices,
captured by the n-cochain X € C" with n > 0 and values x, € R

on each n-simplex r .

In absence of interactions these simplices obey the same dynamics

r
= f(x,)
dt '
To insure invariance of the uncoupled equations upon change of
orientation of each simplex we must impose that f(X) is an odd

function, i.e. f(x) = — f(—Xx).

dx




Proof

dax

Consider the uncoupled dynamics = f(Xr)

dt

Upon change of orientation of the simplex r we have X, - — X..

X
Therefore the dynamics becomes — = — f(—x,)

dt

Imposing invariance of the dynamics under this change of
orientation implies that the function f(X) must be odd, i.e.

f(x) = —1(—x).




Coupled identical
topological signals

e The coupled dynamics obeys

dx,
= f(x) — azﬂ: L], h(x,)

e where in order to ensure invariance under change of

orientation of the simplifies h(x) should be an odd
function.




Global synchronisation
state of topological signals

Recall that for higher order topological signals, the signs of
the signal is determined by the orientation of the simplex, i.e.

X(a,) = = X(=a,)

For instance a positive sign of an edge flux is relative to the
orientation chosen for that edge.

It follows that the state of global synchronisation is a
state in which

x, =uXwithuy. € {1,-1} Vre Q (X)




Global topological
synchronisation

e |t follows that the coupled dynamics

dx,
dt

= f(x,) = 0 ) [L1y],q h(x))
q

e can lead to global synchronisation only if the kernel of the
Hodge Laplacian L[n]admits an eigenvector u with elements
of constant absolute value.

e Therefore for identical higher-order oscillators there are not
only dynamical but also topological constraints to global
synchronisation




Topological conditions for
global synchronisation

e Assume u is a vector of elements |u,| = 1.

e Global synchronisation can only happen if there is one
such vector u in the kernel of the Hodge Laplacian L[n].

» Therefore we must have B, ;u = 0, uTB[n+1] =0




Topological constraints for
global synchronisation

o(© 0-simplex 1-1-10..
s (00
§ N Assume u is a vector of elements |u,.| = 1.

The condition B;,;u =0

This implies that:

The simplicial or cell complex must

be balanced




Topological constraints for
global synchronisation

o®) 2-simplex Assume u is a vector of elements |u,.| = 1.

The condition uTB[nH] =0

(1,1,1)By = -1 £0

This implies that:

o) 3-simplex On simplicial complexes topological signals
e
! 1 ) . )
\/ /O_gm B; = (—11> of odd dimension can never achieve
-1
()
o4 \/
(1,1,1,1)B3 =0 global synchronisation




Topological constraints for
global synchronisation

0(2) 2-cell

B (:1) Assume u is a vector of elements |u,| = 1.
2 pu—
(1)

Y :" \
1 1
A

1

(1,1,1,1)B; =0 The condition uTB[nH] =X |

This implies that:




Square lattice with periodic boundary
conditions (torus)

* Consider a square lattice with periodic boundary
conditions (a torus).

« The eigenvector u = 1 defined on each link of
the network is in the kernel of L, i.e.

1 1 € ker(Lyy)

— T —
Indeed Bjjju=0,u' B =0

or

dvu=0, culu=20
1 I ) 1 (see figures)



Square lattice with periodic boundary
conditions (torus)

* Consider a square lattice with periodic boundary
conditions (a torus).

» The eigenvector u defined on each link of the

network and elements u, = 1 on each x-type link
1 and u, = — 1 on each y-type link is in the kernel
of Ly, i.e.u € ker(Lyyy)

1 Indeed B[l]ll — 0, uTB[z] — 0

or

-1 ¢ , -1 dvu=0, culu=20
(see figures)



Properties of global synchronisation
of topological signals

e The globally synchronised state is aligned with an harmonic
eigenvector of the Hodge Laplacian, i.e. requires
topologies with holes that span the entire simplicial or
cell complex.

Since the Hodge Laplacian has an harmonic space with
dimension given by the Betti number, the same simplicial or
cell complex can sustain different globalised states (see
tori)




Example of manifolds sustaining
global synchronisation

Synchronisation of (n — 1)-dimensional Synchronisation of any k-dimensional
topological signal topological signal

e

n-dimensional hypersphere
n-dimensional torus (cell complex)

Betti numbers

:BO — ﬁn—l —

Pp=0for0<k<n-—1 ﬂk=<”;1>

Betti numbers



Master Stability Function for
simplicial and cell complexes

The Master Stability Function establishes the dynamical
conditions ensuring the stability of global synchronisation.

It depends on the non-zero spectrum of the Hodge
Laplacian.

It should account for the possible degeneracy of the zero
eigenvalue (a dimension of the kernel greater than one)

It is based on an expansion around a stable solution of the
uncoupled dynamics.
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The Dirac operator on
simplicial complexes

The Dirac operator allows
to study interacting topological signals of different dimensions
coexisting in the same network topology

Dirac operator Topological signal “spinor” S = @izo C d
( )
0 By O (Xl\ X4 Node signal
D= B[Tl] 0 Byl D=1|X X5  Link signal
\X3} X3 Triangle signal

-
0 BL 0



The action of the Dirac operator

The Dirac operator allows cross-talking
between signals of different dimension

B[I]X2
=

.
B[z]x2




Dirac Turing patterns

Defining ® = (X, X,, X3)T describing topological
signals on nodes and links, and 2-cells and the
reaction-diffusion dynamics

d = F(®,DD) — yDD,

With the matrix of diffusion coefficients given by

(D, 0 0)
(0 0 D,

Giambagli et al. (2022)



The homogeneous pattern

The homogenous pattern
® = (x;,X,,X;)' = u' is a solution of the
considered dynamics

® = F(D,DP) — yDD,

If and only if

u € ker(D),

Giambagli et al. (2022)



The homogeneous pattern

The condition

u € ker(D),

In 2d implies that

u; € kerLg, u, € kerly;;; u; € kerL,,

Which might be allowed only on some special
topologies

(e.g. square lattice with periodic boundary
conditions, i.e. torus)

Giambagli et al. (2022)



The homogeneous pattern

The condition

u € ker(D),

In 1d implies

u, =1€kerL, u, € kerLy;

Which implies that the networks have d even
degree of the nodes

Giambagli et al. (2022)
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Dirac Turing patterns

Defining ¥ = (0, )" describing topological
signals on nodes and links and the reaction
diffusion dynamics

d = F(®,DD) — yDD,

Turing patterns on nodes and links can set in
provided suitable topological and dynamical
conditions.

Giambagli et al. (2022)



w

Dirac Turing patterns

(a)

10

3 15

4 16

(b)

10

Hypercubic tessellations of d-
dimensional torus admit Turing
patterns on any dimension

The figure show Turing patterns
on nodes and links on a 2D
Torus.



Higher-order structure and dynamics
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Dirac synchronisation
« Phenomenology and Theory

Global topological synchronisation and Master Stability Function

» Global synchronisation on graphs
* Global synchronisation on simplicial and cell complexes

> Turing patterns coupled by the Dirac operator

Addendum:
> Triadic percolation and non-linear dynamics of the giant component



Higher-order structure and dynamics
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Triadic Interactions

|
|
|
|
|
|
@ * ®

A triadic interaction occurs
when a node
affects the interaction
between other two nodes



Sign of triadic interactions

* *

The presence of a third species can enhance or can inhibit the interaction
between two species
The presence of a glia can change the synaptic interactions between two
neurons



Robustness of a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.



Robustness of a network

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.



Robustness of a network

After the damage \i&
>

We assume that a fraction 1-p of links is damaged.
We evaluate the robustness of the network by calculating the fraction R
of nodes in the giant component after this inflicted damage.




Percolation transition

As links are damaged with probability f=1-p
the fraction R of nodes in the giant component

of an infinite network has a transition from a non-zero to a zero value

S=1-G,(1-pS)

s e R=1-Go(l=pS)




In brain and in climate networks
however the giant component
does not reach a steady state and is dynamical
Can percolation be turned

into a fully fledged dynamical process?

H. Sun, F. Radicchi, J. Kurths, G. Bianconi Nature Communications (2023)



Higher-order network with
signed triadic interactions
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Positive regulation

Negative regulation H. Sun, F. Radicchi, J. Kurths, and G. Bianconi (2023)



Activity of nodes and
structural links

Regulatory interactions
determine which links are active.

Structural links are active if they are connected to a
least a active positive regulator node and they are
not connected to any active negative regulator node

Structural interactions
determine which nodes are active.

A node is active if it belongs to the giant component
of the structural network



Dynamic nature of
percolation

Agorithm:

Step 1: Evaluate the nodes in the giant component of the
structural network. Nodes are active if and only if they
belong to the giant component of the network

Step 2: Deactivate the links that are connected to at least
one active negative regulator node or that are not
connected to any active positive regulator node. All the
other links are damaged with probability q=1-p.

Repeat from Step 1
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Theory

Step 1

SO =1-G, (1 - pg—DS@)

RO — Go(1 —pg_l)S(”) |

Step 2

p? = Gl (1 - R?) [1 ~ G (1 - R@))]



Blinking of the network
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Chaotic pattern of the order
parameter of percolation
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Chaos in connectivity of the
hetwork




Route to chaos In
scale-free networks

Absence of triadic In presence of triadic
interactions interactions

Theoretical prediction Monte Carlo simulations
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The map of triadic
percolation

The map R = h(RY)

is in the universality class of the logistic map
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Blinking and chaos in
mouse brain network

Mouse brain network+ random regulatory interactions
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Only positive regulations

The dynamics always reaches a steady state The percolation transition is discontinuous and hybrid
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Triadic percolation with
time delays
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Triadic Interactions In more
complex settings

Hypergraphs Multiplex networks

ke



Dirac synchronisation
« Phenomenology and Theory

Global topological synchronisation and Master Stability Function

* Global synchronisation on graphs
» Global synchronisation on simplicial and cell complexes

> Turing patterns coupled by the Dirac operator
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The Dirac operator on
simplicial complexes

The Dirac operator allows

to study interacting topological signals of different dimensions
coexisting in the same network topology

Dirac operator

(0 B, 0
D=|B/ 0 B,

-
(0 B] 0,

S =

Topological signal “spinor”

(SO\
S1

\52)

So  Node signal
S Link signal
S>  Triangle signal



The action of the Dirac operator

The Dirac operator allows cross-talking
between signals of different dimension




The Dirac as the square-root of the Laplacian

The Dirac operator
can be interpreted as the
“square-root” of the Laplacian

0 0 Ly



