Higher-order networks

Franqui Chair Lessons

18-19 April 2023

Ginestra Bianconi

School of Mathematical Sciences, Queen Mary University of London
Alan Turing Institute
The

b
%O Queen Mary Alan Turing
University of London Institute



Higher-order structure and dynamics
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Boundary Operators

Boundary operators
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Topological Kuramoto model
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Hodge Laplacians

The Hodge Laplacians describe diffusion
from n-simplices to m-simplices through (m-1) and (m+1)

simplices

—_pT T
( Ly =B, By, + B[m+1]B[m+l]>

The higher order Hodge Laplacian can be decomposed as
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Simplicial complexes and
Hodge Laplacians

Hodge Laplacians
The Hodge Laplacians describe diffusion

®

from m-simplices to m-simplices through (m-1) and (m+1) simplices

For a 2-dimensional simplicial complex we have
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Coupling topological signals
of different dimer)sion

0,

How can we couple

topological signal

of different dimension



Dirac legacy




Dirac operator on graphs
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Dirac operator on networks
- Eigenvalues, Eigenvectors Chirality
- Dirac equation version 1.1

> Dirac operator on simplicial complexes

Dirac operator & Algebra

- Topological Dirac equation in 3 dimensions

- Topological Dirac equation in 3+1 dimensions

Weighted and Normalised Dirac operator



The Dirac operator on graphs



Topological spinor

The topological spinor is defined on both nodes and edges of a graph G = (V, E)
asW=y®yecC'®C' orequivalently
*=(y)
4
with
« y defined on nodes, i.e. y € CY

. y defined on edges, i.e. w € C!



Exterior derivative and its dual

« The exterior derivative d : C* — C! is defined as
(AY)e=pij =X —X; 9radient
« It adjoint operator d* : C!' — CV is defined as

(d*y); = Z W, — Z y, divergence

e€E’ e€E”



Boundary matrix

@
(%

Boundary matrix

B, is a N X L matrix of elements

© ( 1if £ =[s,7]
©) B (6) =13 —1if £ =1[r,s]

| 0 otherwise

BE_l] Discrete gradient

B[1] Discrete divergence The discrete gradient can be represented

by the coboundary matrix 1_3[1] —= B[Tl]




Boundary operator and co-
O,

boundary matrix

Boundary and co-boundary matrices

[1,2] [1,3] [2,3] [3.4] (11 [2]1 [3]1 [4]

[1] -1 -1 0 0 [12] =1 1 0 0
B, =[] 1 o -1 0,B};=[13 -1 0 1 0,

@ 3] 0 1 1 -1 23] 0 -1 1 0
[4] 0 0 0 1 34 0 0 -1 1

BT

1] Discrete gradient

B The discrete gradient can be represented
[1] Discrete divergence

by a coboundary matrix 1_3[1] = B[Tl]




Hodge Laplacians

©

(4)
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Hodge Laplacians

The Hodge Laplacians describe diffusion

from m-simplices to m-simplices through (m-1) and (m+1) simplices:

K dim ker(L,) = f,

(Betti numbers of a connected networkx fora graph we have
Py = 1 one connected component

Py = L — (N — 1) number of independent cycles

J




Exterior derivation and its adjoint on a graph

The exterior derivative and its adjoint

d = ( (')r 0> d* — <0 B[1]>
B, 0 0 0

act on a topological spinor

v- ()




Basic definition of the Dirac operator on graphs

The Dirac operator in its simplest form

is the self-adjoint operator D : C' @ C! - CY @ C! defined as

satisfying

D(y @y) =(d+d*)(x @y = (d*y) @ (dy)



Dirac operator on a network

Exterior divergence

0 O 0 B
<B[Tl] 0) <0 0

Dirac operator is a self-adjoint operator

D =d+d*




Dirac operator on graph

Dirac operator on a graph

Action of the Dirac operator on
the topological spinor

0 B
DV — [1] <X) _
B, 0 )\




The Dirac as the square-root of the Laplacian

The Dirac operator
can be interpreted as the
“square-root” of the Laplacian

O B L 0
p=( ) p2— o [ Lo
By, O 0 Ly,

The non-zero eigenvalues of the Dirac operator
are the square root of the non-zero eigenvalues of the graph Laplacian.



The spectrum of the Dirac operator

Ligg O
Since D? = & = ( (; ] . ) and L, Ly are isospectral, it follows
[1]

that:

Spectrum: For every positive eigenvalue y of L[O] there is one positive and

one negative eigenvalue A of the Dirac operator D with

A=%./u



Chirality

Let us define 7, = <(1) 01>

obeying the anti commutator relation{D, y,} = 0

e Chirality:If ¥ = (y, t//)T is an eigenvector of the Dirac operator with
eigenvalue 4, i.e. if D¥ = AW then 7, = (¥, — w)' is an eigenvector of
D with eigenvalue — A

* |Indeed from the anti-commutator relation it follows that

Dy¥ = -y, D¥ = — Ay,¥



Eigenvectors of the Dirac operator

* |t follows that the matrix of eigenvectors of the Dirac operator can be

expressed as
® <U[1] U[l] Ugarm 0 >
V[l] _V[l] 0 Ullzarm

« where UM, VU |ndicates the right and left singular vector of the
coboundary operator and Ug“”m, Uil"”"m are the matrices of the harmonic

eigenvectors of Ly, L, respectively.



Index of the Dirac operator

The index of the Dirac operator D is given

by the Euler number y of the graph

ind D = dim ker d — dim ker d* = y,

Indeed




Introducing an algebra

Dirac operator on a network
can be enriched by an algebra

D=1, o
[1]

beC, |b|=1




Topological spinor
On a network we consider the topological spinor

()

Characterising the dynamical state of the topological signals of
the network, being a vector with a block structure formed by a
O-cochain and a 1-cochain

()(1\ (l//fl\

X Ye,
X — . 2 VI — o "

\)(N) \l/jfL)



Topological Dirac equation

The topological Dirac equation is then given by

0¥ = XV
with Hamiltonian
A =D+ mp

1 0

0 1> leading to the anti-commutator {D,f} =0

Where f = <



Sketch of the derivation

The eigenvalue problem EW = #Z'W is equivalent to
Exy = bBy + my,

Ey =b*B'y — my

Let us re-order obtaining

(E — m)y = bBy,

(E+my =b*B'y

Therefore

(E—m)(E+m)y =BB'y = Lot

= This implies E2 = m? + | 1|
(E+m)Y(E—-my =B By = L?l‘)]w”t//



Energy Eigenstates

The energy eigenstates satisfy EW = ZW which leads to

Ey = bBy + my,
Ey =b*B'y — my

It follows that y, ¥ are respectively the left and right singular vectors of B with
singular value A

and that the dispersion relation is relativistic E? = | A |2 + m?,

i.e. the energy values are givenby FE ==+ \/ |4 ]* + m?



Eigenvectors of the Dirac equation

The eigenvectors of the Dirac operator are

¢/{+] —¢ <3j> ¢/{+] - (

where u,, v, are the right and left singular vector of B, corresponding to singular value 4 and € indicates the
normalisation constants.

The eigenvectors of the topological Dirac equation are instead

u, bi
—1Uu
¢/{+] =€ i ¢/{+] =g 1El+m 4
|E|+m 4 -V,

Therefore the overall normalisation of the nodes signal changes with respect

to the normalisation of the edge signal.



Matter-Antimatter asymmetry and homology

G(E)

The states at energy states at £ = m
are localised on nodes and they have a

degeneracy given by the Betti number /,

The energy states £ = — m
are localised on links and they have a degeneracy Density of states
given by the Betti number £,



Eigenvectors of the Dirac operator
on real networks




Eigenvectors of the Dirac Operator
on real networks




The Dirac operator on simplicial complexes



The Dirac operator on
simplicial complexes

The Dirac operator allows
to study interacting topological signals of different dimensions
coexisting in the same network topology

Dirac operator Topological signal “spinor” S = @izo C d
(0 B, O0) TR
[1] So So Node signal
D = B[Tl] 0 B[z] : S= 1% S1 Link signal
\ 0 B[Tz] 0 \52) S7  Triangle signal

/



The action of the Dirac operator

The Dirac operator allows cross-talking
between signals of different dimension

(
B[l]s1

.
B[l]so + B[2]52

.
B[z]s1

\ /



Dirac decomposition

Here
D[l] only couples node and link signals and

D[z]only couples link and triangle signals

0 By O 0 0 O L 0 0
O O B 2 . 2
Dy = B[Tl] 0 0| Dp-= T . Diy=2y=[ 0 Lfp" o Dp=
0 0 0 0 By O 0 0 0



Dirac decomposition

Since the boundary of the boundary is null we obtain
DDy = DDy =0

which implies

ker(Dpp) 2 im(Dp))
ker(Dp,;) 2 im(Dyy;)




Dirac decomposition

Every topological signal can be decomposed in a unique way
thanks to the Dirac decomposition

(RDS = im(Dy;) @ ker(D) & im(Dy,,) )

therefore every signals defined on nodes, links and triangles
can be decomposed in a unique way as

1] _ +
stH! = D[I]D[l]s

2] _ +
stel = D[z]D[z]s

s = gl + g2l + gharm With




Eigenvalues of the Dirac operator

Due to the Dirac decomposition

the eigenvalues of the Dirac operator D
are the direct sum
of the non-zero eigenvalues

of Dpyyand of Dy,
plus the zero eigenvalue
with degeneracy 3, + B, + p,



Eigenvectors of the Dirac operator

Due to the Dirac decomposition

the eigenvectors of the Dirac operator D
are the eigenvectors
corresponding to non-zero eigenvalues

of Dy or of Dy,
r the harmonic eigenvectors of D
b = ((I)[l] (I)[2] (I)harm)
with @ |ocalised on nodes and links and

®!?! |ocalised on links and triangles



Chirality

0

Let us define 7, = -1

S & -
—o &

obeying the anti commutator relation{D, y,} = 0, {D,;, 7o} = 0,

« Chirality:If ¥ = (x, v, ())T is an eigenvector of the Dirac operator with eigenvalue 4,
i.e. if DW¥ = AW then ¥ = (), — v, 0)' is an eigenvector of D with eigenvalue —A.
Likewise if W = (0, y, ) is an eigenvector of the Dirac operator with eigenvalue 4,
i.e. if D¥ = AW then y,W¥ = (0, — x, w) ' is an eigenvector of D with eigenvalue —1

« Indeed from the anti-commutator relation it follows that Dy,¥ = — y,DW¥ = — iy,¥



Eigenvalues of D, ,

The eigenstates of D), satisfy
with s = (S, $;,S,)" which leads to

:usn—l = B[n]sn

_nT
Us, = B[n]sn_1

It follows that S s, are respectively the left and right singular vectors of B,

n—1o»
with eigenvalue Aand u = =x ||



Matter-antimatter symmetry...

For every singular value 4 # 0 of By,

corresponding to the singular vectors u,, v,

the Dirac operator admits
: : [+] u,
a positive eigenvalue u = | 1| with eigenvector ([)ﬂ =% v
p

and

u
a negative eigenvalue u = — | A| with eigenvector (l)/{_] =€ <_é >
A



...and its violation

The zero eigenvectors of D,

are linear combinations of the zero eigenvectors of B,
they can be only localised on n-dimensional
or on (n-1)-dimensional simplices
The degeneracy the zero eigenvalue is given by

the sum of the Betti numbers 5, _| + /3,



Eigenvectors or the Dirac operator

In summary the eigenvectors of the Dirac operator

defined on a simplicial complex of dimension 2 have the structure

( arm

vl Ul o0 0 Uem o 0 )
o = | vyl vyl gzl gl 0 Ullzarm 0
0 0 v —yl2 0 0 Ugarm)

\



Simplicial complex models
of arbitrary dimension
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Topological Dirac operator on a
simplicial complex

The Topological Dirac operator can be extended to higher-dimensional simplices. For instance on a
3-dimensional simplex it is given by

0 b B 0 0
biBry 0 By 0

0 5By 0 BB,

0 0 b[3]B[3] 0

D=



Topological Dirac equation on simplicial
complexes

* The topological Dirac equation

10%; ————— | )
can be extended to simplicial | s |
complexes, in the case of zero
mass it is given by <02 f

= :

O —n=0

° —NnN=
10y = Dy % =
10°" 10° 10’

E
* |t can be shown that thanks to

the HOdge decompOSition this Multi-band eigenspectrum of the
equation leads to a multi-band
spectrum of the energy states.

Topological Dirac equation on a 3-dimensional NGF



Dirac Signal Processing

noisy signal reconstructed

> 4

true signal

reconstruction
+ noise

The Dirac operator allows us to filter out nodes and links signals jointly

L. Calmon, M. Schaub and G. Bianconi
Dirac signal processing of topological signals
(2023)



Processing with the Dirac operator

Given a noisy topological signal defined on simplices of different dimension
S = S + € with € noise
Joint-filtering with the Dirac:

S = argmin { IS — 8|5+ y$" (D — mI)2§}

m > 0 — higher cost negative components
m < 0 — higher cost to positive components



Interpretation of the parameter m

The parameter m can be interpreted as

s'Ds

sTs

m =

Which allow us to interpret the regularisation as a
minimization of the mean square error of the signal around m

The parameter m can be learned from data



The Florentine Families network: [

- Simple network structure, true signal aligned with an eigenvector of D

Dirac signal processing

S = argmin { IS — §||% +y§T (D - mI)2§}

1.0 1.0

\ [
~ 0.6 ~ 0.6
E E
0 0
< 0.4 <04
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—— mfilter
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-4 -2 0 2 4 -4 -2 0 2 4

m
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Require: m,, T, n, s,

8, [I— (D, — M, 1)~ 15,

t+ 0
while t < T do
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My < (1—mn)
end while




Dirac sighal processing on the Network
Geometry with Flavor

AL AL DA [
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Dirac signal processing on buoys data
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Combining the Dirac operator with algebra
Topological Dirac equation on 3 dimensional lattice

G. Bianconi,
Topological Dirac equation on networks and simplicial complexes
JPhys Complexity (2021)
G.Bianconi,

Dirac gauge theory for topological spinors in 3+1 dimensional networks.
arXiv preprint arXiv:2212.05621 (2022).



Directional Dirac operator on lattices

b) S rmmses

@ QO———O | x-link

x-link

o y-link
- I I _— —
y-link
O O é z-link




Introducing an algebra

Dirac operator on a network
can be enriched by an algebra

D=1, o
[1]

beC, |b|=1




Topological spinor for
3-dimensional lattice

In order to treat every type of link differently

by inducing different rotations of the topological spinor,

in 3-d we need to consider the spinor W formed by two 0-cochains and two 1-cochains, i.e.



Directional Boundary operators and graph Laplacians on
3-dimensional lattice

We consider directional boundary operators only acting between nodes and w-type links

1if Z=1s,r] and 7 is a type w-link
B, =14 -1if £=1[r,s] and 7 is a type w-link
0 otherwise

L

This allows to define the directional graph Laplacians

_ T
L, = B,B,

whose sum gives the graph Laplacian of the network
L =L+ Ly + L

Note that on square lattices we have that the directional Laplacian commute



Directional Dirac operators on
3-dimensional lattice

In 3d the Directional Dirac operators are defined as

0 A W)
Di)=1 _:
A (W) 0

By =01B), B =0Bg), B =03B),

where we make use of the Pauli matrices

6,(F) = (F" 5) 6,(F) = <1§ N iF>, o-3<F>=<

F 0
0 —-F

)



Spatial directional Dirac operators

The spatial directional Dirac operators

0 QQ(W)
D)= _:
PB (W) 0

are Hermitian

and their square is given by the directional Laplacians

2 _
(Dl = ZLy =
0 O'O(B )B(w))



Topological Dirac equation on
3-dimensional lattice

The Topological Dirac equation in 3d lattice is given by

0¥ = (B + mp)¥

where

10

D= 2 D) and P=\o _q

=
m
=
<
A
|l
N



Dispersion relations and
anti-commutation relations

The dispersion relation remain relativistic

E*=m?>+ |17+ AP+ 14,7
with 4,y indicating the eigenvalue of the directional boundary operator B,

despite the directional Dirac operators do not anti-commute (or commute)

0
{D x)? D} = ]
@) ) 0 l€1,2,30'3(B(Tx)B(y) - B(Ty)B(x))



Sketch of the derivation

The eigenvalue problem EWY = #Z'WY is equivalent to

E

I1]

- 2 ‘%(W)\P(W)_i'ma’

Wwe(X,y,2)

S ot o=
Let us re-order obtaining

(E—m)E = Z By Psicn,

WE(X,y,2)

vy _ o=

Therefore

(E—m)(E+m)E = Z %j(w)%zw)ﬁ = 6o(Ly) + L)) + L))E = op(Lp)E

(w)

sl This implies

E*= |17 +m?



Eigenvalues 4,

Let us consider a regular square lattice of dimension d.

For any direction w the network formed by the nodes and the w-links is a set
of disconnected chains. Therefore the eigenvectors are the Fourier modes.

Therefore the eigenvalues of the directional Laplacian L, satisfy
| Ay | = 2[sing,,,/2 |

Where g, is the w-component of the wave-number.



Directional Dirac operators on
3+1-dimensional lattice

In 3+1-dimensions the Directional Dirac operators are defined as

D " P forw € { } D ! P
— W X, YV, —
(w) ‘%Erw) 0 Y>Z () _ %Ert) 0

with

By = 160(By)), By = 61(B(y), By = 62(By)), By = 65(By),

where we make use of the Pauli matrices

_(Fo (0 F (0 —iF _(F 0
c)(F) = (0 F) c,(F) = (F 0>, c,(F) = (iF 0 > c;(F) = <0 —F>'



Temporal directional Dirac operator

The temporal directional Dirac operators

0 B,
Do :( Bly 0 )
()

Is anti-Hermitian

and its square is given by the directional temporal Laplacian

T
D= -z, = (P00 O
o1 0 — T



Topological Dirac equation on
3-dimensional lattice

The Topological Dirac equation in 3d lattice is given by

B+ mp¥ =0
where
10
B= ) D, and p= (
we{t,x,y,z} 0 -1



Dispersion relations and
anti-commutation relations

The dispersion relation remain relativistic
|21 = m? + 12,7+ 14,1 + 12,17
with 4,y indicating the eigenvalue of the directional boundary operator B,

despite the directional Dirac operators do not anti-commute (or commute)

DD 0 0 (D, D }=< Y )
D, Dyt =1 ¢ i€ ,303(B], B, — B{, B e =) 0 —ioy(B(,B(, + BB,



Sketch of the derivation

The eigenvalue problem (,W+ mfB)¥ = 0 is equivalent to

we(x,y,z)

_ @R _ W =

T e\ =

Let us re-order obtaining

mE& = V- D Bt
Wwe(x,y,2)
m¥, = {%’EI)E
m‘i’(w) = %ZW):
Therefore This implies

—

0]

2m Ta_ Ta _ — _ = —
m’E = BB B~ Y BBl E =060y~ Liy— Ly —LE =0

2 2 2 2
™ | 2,17 = m® + [ 417+ 14,17+ |4



Application to Multiplex Networks
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G. Bianconi PRE (2013) Multilayer connectome of c.elegans, Bentley et al (2016)



Application to multiplex networks

We can “blindly” use the directional Dirac operators of 3d lattices for
multiplex networks where one distinguish between different types of multilinks

The dispersion relation is relativistic O O
E*=m’+p O O
With [ indicating the eigenvalue of O O O

L = L(I,O) + L(O,l) + L(l,l)

Note however that in practically all
multiplex networks the graphical
Laplacians do not commute

L. L—]#0 Multilink Multilink Multilink
e (1,1) (1,0) (0,1)



Weighted and Normalised Dirac operator



Recall from lecture 1 the definition
of coboundary operator and its dual



Cochains

m-cochains

A m-dimensional cochain f € C™ is a linear function f : C,, — R, that
associates to every m-chain of the simplicial complex a value in R.



L? norm between cochains

We define a scalar product between m-cochains as

(L) =1t

Which has an element by element expression

(Y= D, f

reQ, (%)

This scalar product can be generalised by introducing metric matrices (see next)



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"*!is givenby g = 5, f.

—RT — R
Theng =B, =B, f



Adjoint of the coboundary operator

Adjoint operator ¢},

The adjont of the coboundary operator 6%, : C"*! — C™ satisfies

<g’ 5mf> — <6:;1g9f>

where f € C"™ and g € C"™*1.

If follows that if f* € C™ is given by f" = o g

' DT _
Then f’ = B[mH]g = B[m+1]g



How this definition change is we introduce a
non-trivial metric?



Metric matrices

We introduce the N,, X N, metric matrices G[_W}] typically taken to be diagonal with elements

(@, ) = w(a,)

where w(a,.) indicates the affinity weight (inverse of a “distance”) associated to the simplex a,.

For a graph, typical choices of these matrices are
G\([r. 51, [r. s]) = w([r, s]) weight of the link

G[_O%([r], [r]) = Z w([r, s]) strength (weighted degree) of the node
SEQy(H)




Scalar product between co-chains

We define a scalar product between m-cochains as
T—1
fify=1 G[m]f
Which has an element by element expression

Ffy="Y FIGN.f

reQ, (K)

For Gp,;; = I we recover the standard L? norm.



Coboundary operator

Coboundary operator 6,

The coboundary operator &, : C"™ — C™*! associates to every m-cochain
of the simplicial complex (m + 1)-cochain

0 mf — f O Om+1-
Therefore we obtain

m+1

(S F)V0, V15 - - Vims1] = Z(—l)pf([vo,vl, Vel Vpal o Vinel])
p=0

If follows that if g € C"*!is givenby g = 5, f.

—RT — R
Theng =B, =B, f



Adjoint of the coboundary operator

Adjoint operator ¢},

The adjont of the coboundary operator 6%, : C"*! — C™ satisfies

<g’ 5mf> — <6:;1g9f>

where f € C"™ and g € C"™*!.



Ajoint operator 0"

We define the matrix BE’:n as the matrix representing 5,;‘;,

+1]

le.if f=0%g, then f'=BF g

From the definition it follows that

— 2 _ — T _1 _ —1
B[m+1] — G[m]B[m+1]G[m+l] - G[f’n]B[m+1]G[m+1]

Hence if G[m] —_ I, G[I’I’H—l] —_ I then BEX:’I’H'l] — B[m_|_1]



Proof

We define the matrix B*  as the matrix representing o,
[m+1] m

i.e.if f=06%g, then =B} 2

We have the scalar product (2.6, f) = +1]B[m f

(6738, f) = g(B*)[m+1] G, f

If follows that for any f and g 2Gi b Byt = 2 (B, 1]> G\t

Hence B* =GB/

1
[m+1] G [m+1] — G[m]B[m+l]G m+1]

[m+1]



Weighed Hodge Laplacian

The Hodge-Laplacians
The m-dimensional Hodge-Laplacian L,, is defined as
L, = L,P + Ldovwn

where up and down m-dimensional Hodge Laplacians are given by

L,y = 66
m - mY n»
down  _ *

The weighted Hodge Laplacian obeys Hodge decomposition



Hodge decomposition for weighted Hodge
Laplacians

The weighted Hodge Laplacians

up _ R D
L BEX;1+1]B[m+1] G[m]B[m+1]G

[m] [m+1] [m+1

down _ 1 D+ _ Pl
Li" =B, B* =B G, B, Gy,

obey Hodge decomposition, i.e. L”p LdOW” =0, L?}%"”Lﬁ{; | = 0

Proof:

up Yy d _ _
L L™ = GpuBns1 Gy, i Gim— 1B G = 0

d up T T
Li "L =B, G 1]B[m]G[m]G[m]B[m+1]G B/ 11 =BGl 1 BBt Glns 1 Bpg; = 0

[m+112 [m+1]

[m+1] [m+1]




Weighted Dirac operator



Weighted Dirac operator on a network

A 0 b*By
D= _
bBy, 0

with b€ C, |b|=1 and Bﬁ] = G[O]B[TI]G[‘ﬁ

Do (L[O] 0 )
0 L[l]

with

[ _PR* R [ _ B RBx*
Loy = Bf} Bpiy, Lyyy = By B,

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator

If the matrix G[_ﬁ,G[_(ﬁ are the diagonal matrices with elements
—1 _
G[_(ﬁ(r, r) = Z Wy,

CEeE,

The weighted Dirac operator is also called normalised Dirac operator and
has eigenvalues bounded in absolute value by one |A| < 1

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator of unweighted
networks

If the weights of all the links are one, i.e. w, = 1 we have

That the matrices G[_ﬁ,G[_(ﬁ are the diagonal matrices with elements
—1 _ —1 _
G[l](f, £)=1/2 G[O](r, r) =k,

The normalised Dirac operator is given by

A <0 KIB[I]/Z)
D=
.

F. Baccini, F. Geraci and G. Bianconi (2022)



Symmetric Normalised Dirac operator

The normalised Dirac operator of an unweighted network

o ( 0 K‘IB[I]/2>
- T

Can be symmetrized obtaining the Dirac operator with the same spectrum given by

B/, K2/1/2 0

5 _ [ 0 K—1/2B[1]/\/§]

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator on a network

. 0 B

. D D[ -1 _ -1
with B[l] — G[O]B[I]G[l] _ KO B[l]

F. Baccini, F. Geraci and G. Bianconi (2022)



Topological Data analysis
Persistent Dirac for molecular representations

(a) filtration process

f=0.0A f=0.754 f=124 f=154 f=18A
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JJ Wee, G. Bianconi, K. Xia (2023)



Dirac operator on networks
- Eigenvalues, Eigenvectors Chirality
- Dirac equation (basic version with no associated algebra)

- Dirac operator on simplicial complexes

Dirac operator & Algebra

- Topological Dirac equation in 3 dimension

- Topological Dirac equation in 3+1 dimensions

Weighted and Normalised Dirac operator
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