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Boundary Operators

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

,
B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

Boundary operators

The boundary of the boundary is null 

B[1]

B⊤
[1]

B⊤
[2]

Discrete divergence 

Discrete gradient 

Discrete Curl

B[m−1]B[m] = 0, B⊤
[m]B⊤

[m−1] = 0



Topological Kuramoto model

·θ = ω − σB[1] sin B⊤
[1]θ

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,
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θ1 ϕ[1,2]ϕ[1,2]

Topological Higher-order Kuramoto modelStandard Kuramoto model

A. P. Millan, J.J. Torres and G. Bianconi PRL (2020)



Hodge Laplacians
The Hodge Laplacians describe diffusion  

from n-simplices to m-simplices through (m-1) and (m+1) 

simplices 

The higher order Hodge  Laplacian can be decomposed as


with 


L[m] = Ldown
[m] + Lup

[m],

Ldown
[m] = B⊤

[m]B[m],

Lup
[m] = B[m+1]B⊤

[m+1] .

L[m] = B⊤
[m]B[m] + B[m+1]B⊤

[m+1] .



Simplicial complexes and 
Hodge Laplacians

L[0] = B[1]B⊤
[1] L[2] = B⊤

[2]B[2]L[1] = B⊤
[1]B[1] + B[2]B⊤

[2]

The Hodge Laplacians describe diffusion 


from m-simplices to m-simplices through (m-1) and (m+1) simplices


Hodge Laplacians

For a 2-dimensional simplicial complex we have



Coupling topological signals 
of different dimension
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How can we couple  

topological signal  

of different dimension  

locally and topologically?



Dirac legacy



Dirac operator on graphs



Lesson III: 
The Dirac operator  

on networks and simplicial complexes

Dirac operator on networks 
• Eigenvalues, Eigenvectors Chirality 
• Dirac equation version 1.1 

Dirac operator on simplicial complexes 
Dirac operator & Algebra 
• Topological Dirac equation in 3 dimensions  
• Topological Dirac equation in  3+1 dimensions 

Weighted and Normalised Dirac operator 



The Dirac operator on  graphs 



Topological spinor
The topological spinor is defined on both nodes and edges of a graph 


as   or equivalently


 


with 


•   defined on nodes, i.e. 


•   defined on edges, i.e. 


G = (V, E)

Ψ = χ ⊕ ψ ∈ C0 ⊕ C1

Ψ = ( χ
ψ)

χ χ ∈ C0

ψ ψ ∈ C1



Exterior derivative and its dual

• The exterior derivative  is defined as 


    gradient


• It adjoint operator   is defined as 


    divergence

d : C0 → C1

(dχ)e=[i,j] = χj − χi

d* : C1 → C0

(d*ψ)i = ∑
e∈E+

i

ψe − ∑
e∈E−

i

ψe



Boundary matrix

Boundary matrix

B⊤
[1]

B[1]

Discrete gradient 

Discrete divergence 

1

2

3

4

The discrete gradient can be represented  
by the coboundary matrix B̄[1] = B⊤

[1]

B[1](r, ℓ) =
1 if ℓ = [s, r]

−1 if ℓ = [r, s]
0 otherwise

 is a  matrix of elementsB[1] N × L



Boundary operator and co-
boundary matrix

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

, B⊤
[1] =

[1] [2] [3] [4]
[1,2] −1 1 0 0
[1,3] −1 0 1 0
[2,3] 0 −1 1 0
[3,4] 0 0 −1 1

,

Boundary and co-boundary matrices

B⊤
[1]

B[1]

Discrete gradient 

Discrete divergence 

1

2

3

4

The discrete gradient can be represented  
by a coboundary matrix B̄[1] = B⊤

[1]



Hodge Laplacians

L[0] = B[1]B⊤
[1] L[1] = B⊤

[1]B[1]

The Hodge Laplacians describe diffusion 


from m-simplices to m-simplices through (m-1) and (m+1) simplices: 


for a graph we have


Hodge Laplacians

1

2

3

4

Betti numbers of a connected network 
 one connected component 

 number of independent cycles 
β0 = 1

β1 = L − (N − 1)
dim ker(L[m]) = βm



Exterior derivation and its adjoint  on a graph

d = ( 0 0
B⊤

[1] 0) d* = (0 B[1]

0 0 )
The exterior derivative and its adjoint

Ψ = ( χ
ψ)

act on a topological spinor



Basic definition of the Dirac operator on graphs

The Dirac operator in its simplest form 


is the self-adjoint operator   defined as


satisfying 


D : C0 ⊕ C1 → C0 ⊕ C1

D(χ ⊕ ψ) = (d + d*)(χ ⊕ ψ) = (d*ψ) ⊕ (dχ)

D = d + d*



Dirac operator on a network 

d = ( 0 0
B⊤

[1] 0)

D = d + d*
Dirac operator is a self-adjoint operator

d* = (0 B[1]

0 0 )

Exterior divergence



Dirac operator on graph

D = (
0 B[1]

B⊤
[1] 0 )
ç

Dirac operator on a graph

DΨ = (
0 B[1]

B⊤
[1] 0 ) ( χ

ψ) = (
B[1]ψ

B⊤
[1] χ)

Action of the Dirac operator on  
the topological spinor



The Dirac operator  
can be interpreted as the  

“square-root” of the Laplacian  

   

 ,                                   

The non-zero eigenvalues of the Dirac operator  
are the square root of the non-zero eigenvalues of the graph Laplacian.

D = (
0 B[1]

B⊤
[1] 0 ) D2 = 𝓛 = (

L[0] 0
0 L[1])

The Dirac as the square-root of the Laplacian



The spectrum of the Dirac operator

Since  and  are isospectral, it follows 

that:


Spectrum: For every positive eigenvalue   of  there is one positive and 
one negative eigenvalue  of the Dirac operator  with 


D2 = 𝓛 = (
L[0] 0
0 L[1]) L[0], L[1]

μ L[0]
λ D

λ = ± μ



Chirality
Let us define 


obeying the anti commutator relation 


• Chirality:If  is an eigenvector of the Dirac operator with 
eigenvalue , i.e. if  then  is an eigenvector of 

 with eigenvalue 


• Indeed from the anti-commutator relation it follows that 

γ0 = (1 0
0 −1)

{D, γ0} = 0

Ψ = ( χ, ψ)⊤

λ DΨ = λΨ γ0Ψ = ( χ, − ψ)⊤

D −λ

Dγ0Ψ = − γ0DΨ = − λγ0Ψ



Eigenvectors of the Dirac operator

• It follows that the matrix of eigenvectors of the Dirac operator can be 
expressed as 


• where                    Indicates the right and left singular vector of the 
coboundary operator and  are the matrices of the harmonic 
eigenvectors of  respectively.

Uharm
0 , Uharm

1
L[0], L[1]

Φ = (U[1] U[1] Uharm
0 0

V[1] −V[1] 0 Uharm
1 )

U[1], V[1]



Index of the Dirac operator

The index of the Dirac operator  is given 


by the Euler number  of the graph


D

χE

ind D = dim ker d − dim ker d* = χE

ind D = χE = N − L
Indeed



Introducing an algebra

with

D = (
0 bB[1]

b⋆B⊤
[1] 0 )

b ∈ ℂ, |b | = 1

Dirac operator on a network 
can be enriched by an algebra



Topological spinor
On a network we consider the topological spinor


 


Characterising the dynamical state of the topological signals of 
the network, being a vector with a block structure formed by a 

0-cochain and a 1-cochain                                                     

.

Ψ = ( χ
ψ)

χ =

χ1
χ2
⋮
χN

, ψ =

ψℓ1

ψℓ2

⋮
ψℓL



Topological Dirac equation
The topological Dirac equation is then given by 


 

with Hamiltonian


  


Where    leading to the anti-commutator 

i∂tΨ = ℋΨ

ℋ = D + mβ

β = (1 0
0 −1) {D, β} = 0



Sketch of the derivation
The eigenvalue problem      is equivalent to 


    


Let us re-order obtaining


  


Therefore


                                        This implies  

EΨ = ℋΨ

Eχ = bBψ + mχ,
Eψ = b⋆B⊤χ − mψ

(E − m)χ = bBψ,
(E + m)ψ = b⋆B⊤χ

(E − m)(E + m)χ = BB⊤χ = L[0] χ,

(E + m)(E − m)ψ = B⊤Bψ = Ldown
[1] ψ

E2 = m2 + |λ |2



Energy Eigenstates 
The energy eigenstates satisfy     which leads to 


                        


It follows that  are respectively the left and right singular vectors of  with 
singular value  


and that the dispersion relation is relativistic  ,


 i.e. the energy values are given by      

EΨ = ℋΨ

Eχ = bBψ + mχ,
Eψ = b⋆B⊤χ − mψ

χ, ψ B
λ

E2 = |λ |2 + m2

E = ± |λ |2 + m2



Eigenvectors of the Dirac equation
The eigenvectors of the Dirac operator  are





where  are the right and left singular vector of  corresponding to singular value  and  indicates the 
normalisation constants.


The eigenvectors of the topological Dirac equation are instead


 


Therefore the overall normalisation of the nodes signal changes with respect 


to the normalisation of the edge signal.

ϕ[+]
λ = 𝒞 (uλ

vλ) ϕ[+]
λ = 𝒞 ( uλ

−vλ)
uλ, vλ B[1] λ 𝒞

ϕ[+]
λ = 𝒞 (

uλ
b*λ*

|E | + m
vλ) ϕ[+]

λ = 𝒞 (
bλ

|E | + m
uλ

−vλ )



For  there is symmetry between positive 
energy eigenstates and negative energy 

eigenstates. 

However the symmetry between positive energy 
states and negative energy states breaks down 

for  

The states at energy states at   
are localised on nodes and they have a 

degeneracy given by the Betti number  

The energy states   
are localised on links and they have a degeneracy 

given by the Betti number 

E2 > m2

|E | = m

E = m

β0

E = − m

β1

1 2 4 4
E
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Matter-Antimatter asymmetry and homology

Density of states 



Eigenvectors of the Dirac operator  
on real networks



Eigenvectors of the Dirac Operator  
on real networks



The Dirac operator on simplicial complexes 



The Dirac operator on 
simplicial complexes

The Dirac operator allows  
to study interacting topological signals of different dimensions  

coexisting in the same network topology

D =

0 B[1] 0

B⊤
[1] 0 B[2]

0 B⊤
[2] 0

, s =
s0
s1
s2

Dirac operator Topological signal “spinor” 

s0
s1
s2

Node signal 
Link signal 
Triangle signal

s = ⊕d
m=0 Cd



The action of the Dirac operator 

v [
1,
2]

t

[B
2w

+B
T 1
u]

[1
,2
]

[B
2T
v]

[1
,2
,3]

3

1

4 2

5

3

1

4 2

5

3

1

4 2

5a) b) c)

u [
2]

[B
1
v]

[2
]

t

w
[1
,2
,3
]

t

    , acts on               D =

0 B[1] 0

B⊤
[1] 0 B[2]

0 B[2] 0
s =

s0
s1
s2

→ Ds =

B[1]s1

B⊤
[1]s0 + B[2]s2

B⊤
[2]s1

The Dirac operator allows cross-talking  
between signals of different dimension



Dirac decomposition

D = D[1] + D[2]

D[1] =
0 B[1] 0

B⊤
[1] 0 0
0 0 0

D[2] =
0 0 0
0 0 B[2]

0 B⊤
[2] 0

D2
[1] = 𝓛[1] =

L[0] 0 0

0 Ldown
[1] 0

0 0 0

D2
[2] = 𝓛[2] =

0 0 0
0 Lup

[1] 0

0 0 Ldown
[2]

Here  
 only couples node and link signals and  

only couples link and triangle signals

D[1]

D[2]



Dirac decomposition

Since the boundary of the boundary is null we obtain





which implies





D[1]D[2] = D[2]D[1] = 0

 ker(D[1]) ⊇  im(D[2])
 ker(D[2]) ⊇ im(D[1])



Dirac decomposition
Every topological signal can be decomposed in a unique way 

thanks to the Dirac decomposition





therefore every signals defined on nodes, links and triangles 
can be decomposed in a unique way as 

ℝDS = im(D[1]) ⊕ ker(D) ⊕ im(D[2])

s = s[1] + s[2] + sharm
s[1] = D[1]D+

[1]s

s[2] = D[2]D+
[2]s

With



Eigenvalues of the Dirac operator

Due to the Dirac decomposition 
the eigenvalues of the Dirac operator  

are the direct sum  
of the non-zero eigenvalues  

of  and of   
plus the zero eigenvalue  

with degeneracy  

D

D[1] D[2]

β0 + β1 + β2



Eigenvectors of the Dirac operator

Due to the Dirac decomposition 
the eigenvectors of the Dirac operator  

are  the eigenvectors  
corresponding to non-zero eigenvalues  

of  or of   

r the harmonic eigenvectors of  
 

With  localised on nodes and links and  
 localised on links and triangles

D

D[1] D[2]

D
Φ = (Φ[1] Φ[2] Φharm)

Φ[1]

Φ[2]



Chirality
Let us define 


obeying the anti commutator relation , 


• Chirality:If  is an eigenvector of the Dirac operator with eigenvalue , 
i.e. if  then  is an eigenvector of  with eigenvalue . 
Likewise if   is an eigenvector of the Dirac operator with eigenvalue , 
i.e. if  then  is an eigenvector of  with eigenvalue 


• Indeed from the anti-commutator relation it follows that 

γ0 =
1 0 0
0 −1 0
0 0 1

{D, γ0} = 0, {D[n], γ0} = 0

Ψ = ( χ, ψ, 0)⊤ λ
DΨ = λΨ γ0Ψ = ( χ, − ψ, 0)⊤ D −λ

Ψ = (0, χ, ψ)⊤ λ
DΨ = λΨ γ0Ψ = (0, − χ, ψ)⊤ D −λ

Dγ0Ψ = − γ0DΨ = − λγ0Ψ



Eigenvalues of D[n]
The eigenstates of  satisfy 


    


with  which leads to                 


       


It follows that  are respectively the left and right singular vectors of  
with eigenvalue  and      

D[n]

μs = D[n]s

s = (s0, s1, s2)⊤

μsn−1 = B[n]sn

μsn = B⊤
[n]sn−1

sn−1, sn Bn
λ μ = ± |λ |



Matter-antimatter symmetry…
For every singular value  of  


corresponding to the singular vectors 


the Dirac operator admits 


a positive eigenvalue   with eigenvector  


and 


a negative eigenvalue   with eigenvector  

λ ≠ 0 B[n]

uλ, vλ

μ = |λ | ϕ[+]
λ = 𝒞 (uλ

vλ)

μ = − |λ | ϕ[−]
λ = 𝒞 ( uλ

−vλ)



…and its violation
The zero eigenvectors of  


are linear combinations of the zero eigenvectors of 


they can be only localised on n-dimensional 


or on (n-1)-dimensional simplices    


The degeneracy the zero eigenvalue is given by 


the sum of the Betti numbers  

D[n]

B[n]

βn−1 + βn



Eigenvectors or the Dirac operator

In summary the eigenvectors of the Dirac operator 


defined on a simplicial complex of dimension 2 have the structure


Φ =
U[1] U[1] 0 0 Uharm

0 0 0
V[1] −V[1] U[2] U[2] 0 Uharm

1 0
0 0 V[2] −V[2] 0 0 Uharm

2



Simplicial complex models  
of arbitrary dimension

Emergent Hyperbolic Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

CODES AVAILABLE AT GITHUB                    ginestrab

d=2 d=3



The Topological Dirac operator can be extended to higher-dimensional simplices. For instance on a 
3-dimensional simplex it is given by


 D =

0 b[1]B[1] 0 0

b⋆
[1]B⊤

[1] 0 b[2]B[2] 0

0 b⋆
[2]B⊤

[2] 0 b[3]B[3]

0 0 b⋆
[3]B⊤

[3] 0

Topological Dirac operator on a 
simplicial complex



Topological Dirac equation on simplicial 
complexes

• The topological Dirac equation 
can be extended to simplicial 
complexes, in the case of zero 
mass it is given by


                   


• It can be shown that thanks to 
the Hodge decomposition this 
equation leads to a multi-band 
spectrum of the energy states.

i∂tψ = Dψ
10-1 100 101

E

10-4

10-2

100

G
[n
](E
)

n=0
n=1
n=2

Multi-band eigenspectrum of the  
Topological Dirac equation on a 3-dimensional NGF



Dirac Signal Processing

L. Calmon, M. Schaub and G. Bianconi   
Dirac signal processing of topological signals 

(2023) 

+ noise
reconstruction

The Dirac operator allows us to filter out nodes and links signals jointly 



Processing with the Dirac operator

Given a noisy topological signal defined on simplices of different dimension 
   with  noise 

Joint-filtering with the Dirac: 

 

s̃ = s + ϵ ϵ

̂s = argmin {∥s̃ − ̂s∥2
2 + γ ̂sT (D − mI)2 ̂s}

higher cost negative components 
higher cost to positive components 

m > 0 →
m < 0 →



m =
s⊤Ds
s⊤s

Interpretation of the parameter m

The parameter m can be interpreted as  

Which allow us to interpret the regularisation as a  
minimization of the mean square error of the signal around m 

The parameter m can be learned from data



The Florentine Families network:

- Simple network structure, true signal aligned with an eigenvector of 
 

Dirac signal processing

  

D

̂s = argmin {∥s̃ − ̂s∥2
2 + γ ̂sT (D − mI)2 ̂s}



Learning m
4

In order to solve the self-consistent optimization prob-
lem we implemented the following algorithm. We indi-
cate with t the generic iteration of the algorithm, with
T the maximum allowed number of iterations, with mn

the initial guess for Mn and with 0 < ⌘  1 the learn-
ing rate for Mn. The algorithm is implemented as in the
following

Require: mn,T , ⌘, s̃n
t 0
while t < T do

t t+ 1
ŝn  [I� �(Dn �MnI)2]�1s̃n

Mn  (1� ⌘)Mn + ⌘ ŝ>
n Dnŝn

ŝ>
n ŝn

end while

If the true signal sn is known the performance of the
algorithm can be evaluated by monitoring the error

�sn(�) = ks̃n � snk2, (40)

as a function of time t.

B. The numerical set up

In order to test our algorithm on synthetic and real
data, we consider the following set up.

1. The synthetic signal

For synthetic data, on networks and simplicial com-
plexes in which topological data is not available, the
signal s is taken to be the linear composition of two
signals s1 and s2 with s1 aligned with the single (non-
degenerate) eigenvector of D1 (either �+

1 or �� and s2
aligned with the single (non-degenerate) eigenvector of
D2 (either �+

2 or ��
2 ). In particular we have

s = s1 + s2 (41)

with

s1 = ↵1�
±
1 , s2 = ↵2�

±
2 , (42)

where without loss of generality we take the constants
↵n = 1. Note that there choosing both s1 and s2 propor-
tional to eigenvectors associated to positive eigenvalues
is a useful convention but the method works equally well
if both s1 and s2 are proportional to eigenvector corre-
sponding to negative eigenvalues or if one of the two is
proportional to an eigenvector corresponding to a pos-
itive and the other is proportional to and eigenvector
corresponding to a negative eigenvalue.

2. The topological signals reconstructed from true data

In a number of real datasets the topological signals
might be available only for one dimension. For instance

we might have network datasets formed by nodes and
links where only node signals are available or only link
signal are available. Another situations can occur when
the data are defined on a simplicial complex of dimension
two, formed by nodes, links and triangles for which only
the topological signals defined on the links are available.
In this case we can still generate synthetic datasets in-
cluding reconstructed topological signals of di↵erent di-
mensions. Our approach to reconstruct the signals on
di↵erent dimension is to apply the normalized Dirac op-
erator to the observed signal in a given dimension. In the
general case, indicating with � the signal vector define on
nodes, links and triangles but having non-zero elements
only in one dimension, our reconstructed signal will be

s̃ = ↵(� +D�), (43)

where without loss of generality we can take ↵ = 1. In
this way if � is defined only on nodes s̃ will be defined on
both nodes and links, if � is defined only on links s̃ will
be defined on nodes, links and triangles as long as the
simplicial complex has dimension two. If the simplicial
complex has dimension one, i.e. if it is a network, then if
� is defined only on links s̃ will be defined on both nodes
and links of the network.

3. The Noise

The noise ✏ can come from di↵erent distributions. An
agnostic choice for the noise is assuming each element
of the noise as drawn from a Gaussian distribution. In
particular we consider a vector

x ⇠ N (0, I). (44)

We take the component of this vector orthogonal to the
true signal and we define the noise ✏ as

✏ = �
(I �⇧1 �⇧2)x

k(I �⇧1 �⇧2)xk2
, (45)

where the projectors into the true signal sn is given by

⇧n = sns
>
n (46)

for n 2 {1, 2}. and where � is a control parameter mod-
ulating the signal to noise ratio.

V. RESULTS

A. Application to the Florentine-Families network
dataset

To start with, we validate our algorithm on a network
dataset, i.e. a simplicial complex of dimension one, only
formed by nodes and links. In particular, we consider
the marriage layer of the Florentine Families multiplex
network [? ]. This network is formed by N[0] = 15 nodes
and N[1] = 20 links. The number of triad (2-simplices) is

Learning m

m =
s⊤Ds
s⊤s



Dirac signal processing on the Network 
Geometry with Flavor



Dirac signal processing on buoys data



Combining the Dirac operator with algebra 
Topological Dirac equation on 3 dimensional lattice

G. Bianconi,  
Topological Dirac equation on networks and simplicial complexes 

JPhys Complexity (2021) 
G.Bianconi, 

 Dirac gauge theory for topological spinors in 3+1 dimensional networks.  
arXiv preprint arXiv:2212.05621 (2022). 



Directional Dirac operator on  lattices

x-link  

y-link

(a) x-link  

y-link

z-link

(b)

On a lattice links have different directions 

The Directional Dirac operator induces a  
phase rotation of the topological signal depending on the direction of the links 



Introducing an algebra

with

D = (
0 bB[1]

b⋆B⊤
[1] 0 )

b ∈ ℂ, |b | = 1

Dirac operator on a network 
can be enriched by an algebra



Topological spinor for  
3-dimensional  lattice

In order to treat every type of link differently  

by inducing different rotations of the topological spinor,  

in 3-d we need to consider the spinor  formed by two 0-cochains and two 1-cochains, i.e. 




with


                                                                


Ψ

Ψ = (Ξ
Ψ̂),

Ξ = (χ (1)

χ (2)), Ψ̂ = (ψ(1)

ψ(2))



Directional Boundary operators and graph Laplacians on  
3-dimensional  lattice

[B(w)]rℓ =
1 if ℓ = [s, r] and ℓ is a type  w−link

−1 if ℓ = [r, s] and ℓ is a type  w−link
0 otherwise

L(w) = B(w)B⊤
(w)

L = L(x) + L(y) + L(z)

[L(w), L(w′ )] = 0

We consider directional boundary operators only acting between nodes and w-type links

This allows to define the directional graph Laplacians

whose sum gives the graph Laplacian of the network

Note that on square lattices we have that the directional Laplacian commute



Directional Dirac operators on  
3-dimensional  lattice

σ1(F) = (0 F
F 0), σ2(F) = ( 0 −iF

iF 0 ), σ3(F) = (F 0
0 −F) .

D(w) = (
0 ℬ(w)

ℬ†
(w) 0 )

ℬ(x) = σ1(B(x)), ℬ(y) = σ2(B(y)), ℬ(z) = σ3(B(z)),

In 3d the Directional Dirac operators are defined as 

with

where we make use of the Pauli matrices



Spatial directional Dirac operators 
The spatial directional Dirac operators 

  

are Hermitian  

and their square is given by the directional Laplacians 

D(w) = (
0 ℬ(w)

ℬ†
(w) 0 )

[D(w)]2 = ℒ(w) = (
σ0(B(w)B⊤

(w)) 0

0 σ0(B⊤
(w)B(w)) )



Topological Dirac equation on  
3-dimensional  lattice

D = ∑
w∈{x,y,z}

D(w)

i∂tΨ = (D + mβ)Ψ

The Topological Dirac equation in 3d lattice is given by 

where 

β = (1 0
0 −1)and 



Dispersion relations and  
anti-commutation relations

The dispersion relation remain relativistic


with  indicating the eigenvalue of the directional boundary operator 


despite the directional Dirac operators do not anti-commute (or commute)


λ(w) B(w)

{D(x), D(y)} = (
0 0
0 iϵ1,2,3σ3(B†

(x)B(y) − B†
(y)B(x)))

E2 = m2 + |λx |2 + |λy |2 + |λz |2



Sketch of the derivation
The eigenvalue problem      is equivalent to 


    


Let us re-order obtaining


  


Therefore


                               This implies                                    

EΨ = ℋΨ

EΞ = ∑
w∈(x,y,z)

ℬ(w)Ψ̂(w) + mΞ,

EΨ̂(w) = ℬ†
(w)Ξ − mΨ̂(w)

(E − m)Ξ = ∑
w∈(x,y,z)

ℬ(w)
̂Psi(w),

(E + m)Ψ̂(w) = ℬ†
(w)Ξ

(E − m)(E + m)Ξ = ∑
(w)

ℬ(w)ℬ†
(w)Ξ = σ0(L(x) + L(y) + L(z))Ξ = σ0(L[0])Ξ

E2 = |λ |2 + m2



Eigenvalues λ(w)
Let us consider a regular square lattice of dimension d.


For any direction  the network formed by the nodes and the -links is a set 
of disconnected chains. Therefore the eigenvectors are the Fourier modes.


Therefore the eigenvalues of the directional Laplacian  satisfy  





Where  is the -component of the wave-number.

w w

L(w)

|λ(w) | = 2 |sin q(w)/2 |

q(w) w



Directional Dirac operators on  
3+1-dimensional  lattice

σ0(F) = (F 0
0 F), σ1(F) = (0 F

F 0), σ2(F) = ( 0 −iF
iF 0 ), σ3(F) = (F 0

0 −F) .

D(w) = (
0 ℬ(w)

ℬ†
(w) 0 ) for w ∈ {x, y, z} D(t) = (

0 ℬ(t)

−ℬ†
(t) 0 )

In 3+1-dimensions the Directional Dirac operators are defined as 

with

where we make use of the Pauli matrices

ℬ(t) = iσ0(B(x)), ℬ(x) = σ1(B(x)), ℬ(y) = σ2(B(y)), ℬ(z) = σ3(B(z)),



Temporal directional Dirac operator 
The temporal directional Dirac operators 

  

Is anti-Hermitian  

and its square is given by the directional temporal Laplacian with negative sign 

D(t) = (
0 ℬ(t)

−ℬ†
(t) 0 )

[D(t)]2 = − ℒ(t) = − (
σ0(B(t)B⊤

(t)) 0

0 σ0(B⊤
(t)B(t)) )



Topological Dirac equation on  
3-dimensional  lattice

D = ∑
w∈{t,x,y,z}

D(w)

(D + mβ)Ψ = 0

The Topological Dirac equation in 3d lattice is given by 

where 

β = (1 0
0 −1)and 



Dispersion relations and  
anti-commutation relations

The dispersion relation remain relativistic


with  indicating the eigenvalue of the directional boundary operator 


despite the directional Dirac operators do not anti-commute (or commute)


λ(w) B(w)

{D(x), D(y)} = (
0 0
0 iϵ1,2,3σ3(B†

(x)B(y) − B†
(y)B(x)))

|λt |
2 = m2 + |λx |2 + |λy |2 + |λz |2

{D(t), D(x)} = (0 0
0 −iσ1(B†

(t)B(x) + B†
(x)B(t)))



Sketch of the derivation
The eigenvalue problem      is equivalent to 


    


Let us re-order obtaining


  


Therefore


                                       

(D + mβ)Ψ = 0

ℬ(t)Ψ̂(t) + ∑
w∈(x,y,z)

ℬ(w)Ψ̂(w) + mΞ = 0

−ℬ†
(t)Ξ − mΨ̂(t) = 0

ℬ†
(w)Ξ − mΨ̂(w) = 0

mΞ = − ℬ(t)Ψ̂(t) − ∑
w∈(x,y,z)

ℬ(w)Ψ̂(w)

mΨ̂(t) = − ℬ†
(t)Ξ

mΨ̂(w) = ℬ†
(w)Ξ

m2Ξ = ℬ(t)ℬ†
(t)Ξ − ∑

(w)

ℬ(w)ℬ†
(w)Ξ = σ0(L(t) − L(x) − L(y) − L(z))Ξ = □ Ξ

This implies  


   |λt |
2 = m2 + |λx |2 + |λy |2 + |λz |2



Application to Multiplex Networks



Multilayer Networks

Multilayer connectome of c.elegans, Bentley et al (2016) G. Bianconi PRE (2013)

ginestra bianconi

structure and function

MULTILAYER
NETWORKS

�



Application to multiplex networks

The dispersion relation is relativistic  

With  indicating the eigenvalue of  

Note however that in practically all 
multiplex networks the graphical 
Laplacians do not commute

μ

Multilink  
(1,1) 

Multilink  
(1,0) 

Multilink  
(0,1) 

E2 = m2 + μ

L = L(1,0) + L(0,1) + L(1,1)

[L ⃗m , L ⃗m′ ] ≠ 0

We can “blindly” use the directional Dirac operators of 3d lattices for                         
multiplex networks where one distinguish between different types of multilinks



Weighted and Normalised Dirac operator 



Recall from lecture 1 the definition  
of coboundary operator and its dual



Cochains
Elements Name 41

3.3 <-cochains

<-cochains
A <-dimensional cochain 5 2 ⇠

< is a linear function 5 : C< ! R, that
associates to every <-chain of the simplicial complex a value in R.

Since the cochain indicates a linear function we have

5 (2<) =
’

82&< (K)
2
<
8 5 (U<

8 ). (3.23)

Note that thanks to the linearity of the cohain 5 we always have 5 (U<
8 ) =

�G(�U<
8 ). Given a basis the simplices of the simplicial complexes, we have

that the co-chain 5 is fully captured by the vector f = ( 51, 52 . . . 5#< )> with
58 = 5 (U<

8 ).

4 Scalar product between co-chains and metric

< 5 , 5 >= 5 ⌧
�1

5 (4.1)

4.1 Co-boundary operator X<

Co-boundary operator X<

The coboundary operator X< : ⇠< ! ⇠
<+1 associates to every <-cochain

of the simplicial complex (< + 1)-cochain

X< 5 = 5 � m<+1 (4.2)

(X< 5 ) [E0, E1, . . . , E<+1] =
<+1’
?=0

(�1) ? 5 ( [E0, E1, . . . , E?�1, E?+1 . . . E<+1])

The coboundary operator acts o The adjont of the coboundary operator X⇤< is
obatined by imposing

hX 5 , 6i = h 5 , X⇤6i (4.3)

obtaining



 norm between cochainsL2

We define a scalar product between -cochains as 





Which has an element by element expression





This scalar product can be generalised by introducing metric matrices (see next)

m

⟨ f, f⟩ = f⊤f

⟨ f, f ⟩ = ∑
r∈Qm(𝒦)

f 2
r



Coboundary operator

If follows that if  is given by  . 


Then 

g ∈ Cm+1 g = δm f

g = B⊤
[m+1]f ≡ B̄[m+1]f

Elements Name 41

3.3 <-cochains

<-cochains
A <-dimensional cochain 5 2 ⇠

< is a linear function 5 : C< ! R, that
associates to every <-chain of the simplicial complex a value in R.

Since the cochain indicates a linear function we have

5 (2<) =
’

82&< (K)
2
<
8 5 (U<

8 ). (3.23)

Note that thanks to the linearity of the cohain 5 we always have 5 (U<
8 ) =

�G(�U<
8 ). Given a basis the simplices of the simplicial complexes, we have

that the co-chain 5 is fully captured by the vector f = ( 51, 52 . . . 5#< )> with
58 = 5 (U<

8 ).

4 Scalar product between co-chains and metric

< 5 , 5 >= 5 ⌧
�1

5 (4.1)

4.1 Coboundary operator X<

Coboundary operator X<

The coboundary operator X< : ⇠< ! ⇠
<+1 associates to every <-cochain

of the simplicial complex (< + 1)-cochain

X< 5 = 5 � m<+1.

Therefore we obtain

(X< 5 ) [E0, E1, . . . , E<+1] =
<+1’
?=0

(�1) ? 5 ( [E0, E1, . . . , E?�1, E?+1 . . . E<+1])



Adjoint of the coboundary operator




42 Series Name

The coboundary operator acts o

Adjoint operator X⇤<

The adjont of the coboundary operator X⇤< : ⇠<+1 ! ⇠
< satisfies

h6, X< 5 i =
⌦
X
⇤
<6, 5

↵
where 5 2 ⇠

< and 6 2 ⇠
<+1.

4.1.1 Higher-order Laplacians and Hodge decomposition

The graph Laplacian is a fundamental operator that describes di�usion
occurring from a node to another node through links. The graph Laplacian
matrix L[0] is a # [0] ⇥ # [0] matrix typically defined in terms of the diagonal
matrix K having the degrees of the nodes on the diagonal and the adjacency
matrix A of the network as

L[0] = K � A. (4.3)

However the graph Laplacian can be equivalently defined in terms of the
incidence matrix B[1] as

L[0] = B[1]B)
[1] . (4.4)

This expression can be generalized in order to define higher-order Laplacian
L[<] (also called combinatorial Laplacians) that describe di�usion from a <

simplex to another < simplex.

Higher-order Laplacian

The higher-order Laplacian operator can be represented as a # [<] ⇥ # [<]
matrix. Since for < > 0 di�usion from a < simplex to another < simplex
can occur either though a (< � 1)-simplex or though a (< + 1)-simplex
the higher-order Laplacian L[<] with < > 0 can be decomposed as

L[<] = L3>F=
[<] + LD?

[<] , (4.5)

If follows that if  is given by  . 


Then 

f′ ∈ Cm f′ = δ*mg

f′ = B̄⊤
[m+1]g = B[m+1]g



How this definition change is we introduce a 
non-trivial metric?



Metric matrices

We introduce the  metric matrices  typically taken to be diagonal with elements 





where  indicates the  affinity weight (inverse of a “distance”) associated to the simplex 


For a graph, typical choices of these matrices are 


Nm × Nm G−1
[m]

G−1
[m](αr, αr) = w(αr)

w(αr) αr

G−1
[1]([r, s], [r, s]) = w([r, s])  weight of the link

G−1
[0]([r], [r]) = ∑

s∈Q0(𝒦)

w([r, s])  strength (weighted degree) of the node



Scalar product between co-chains

We define a scalar product between -cochains as 





Which has an element by element expression





For  we recover the standard  norm.

m

⟨ f, f ⟩ = f⊤G−1
[m]f

⟨ f, f ⟩ = ∑
r∈Qm(𝒦)

fr[G−1
[m]]rs fs

G[m] = I L2



Coboundary operator

If follows that if  is given by  . 


Then 

g ∈ Cm+1 g = δm f

g = B⊤
[m+1]f ≡ B̄[m+1]f

Elements Name 41

3.3 <-cochains

<-cochains
A <-dimensional cochain 5 2 ⇠

< is a linear function 5 : C< ! R, that
associates to every <-chain of the simplicial complex a value in R.

Since the cochain indicates a linear function we have

5 (2<) =
’

82&< (K)
2
<
8 5 (U<

8 ). (3.23)

Note that thanks to the linearity of the cohain 5 we always have 5 (U<
8 ) =

�G(�U<
8 ). Given a basis the simplices of the simplicial complexes, we have

that the co-chain 5 is fully captured by the vector f = ( 51, 52 . . . 5#< )> with
58 = 5 (U<

8 ).

4 Scalar product between co-chains and metric

< 5 , 5 >= 5 ⌧
�1

5 (4.1)

4.1 Coboundary operator X<

Coboundary operator X<

The coboundary operator X< : ⇠< ! ⇠
<+1 associates to every <-cochain

of the simplicial complex (< + 1)-cochain

X< 5 = 5 � m<+1.

Therefore we obtain

(X< 5 ) [E0, E1, . . . , E<+1] =
<+1’
?=0

(�1) ? 5 ( [E0, E1, . . . , E?�1, E?+1 . . . E<+1])



Adjoint of the coboundary operator




42 Series Name

The coboundary operator acts o

Adjoint operator X⇤<

The adjont of the coboundary operator X⇤< : ⇠<+1 ! ⇠
< satisfies

h6, X< 5 i =
⌦
X
⇤
<6, 5

↵
where 5 2 ⇠

< and 6 2 ⇠
<+1.

4.1.1 Higher-order Laplacians and Hodge decomposition

The graph Laplacian is a fundamental operator that describes di�usion
occurring from a node to another node through links. The graph Laplacian
matrix L[0] is a # [0] ⇥ # [0] matrix typically defined in terms of the diagonal
matrix K having the degrees of the nodes on the diagonal and the adjacency
matrix A of the network as

L[0] = K � A. (4.3)

However the graph Laplacian can be equivalently defined in terms of the
incidence matrix B[1] as

L[0] = B[1]B)
[1] . (4.4)

This expression can be generalized in order to define higher-order Laplacian
L[<] (also called combinatorial Laplacians) that describe di�usion from a <

simplex to another < simplex.

Higher-order Laplacian

The higher-order Laplacian operator can be represented as a # [<] ⇥ # [<]
matrix. Since for < > 0 di�usion from a < simplex to another < simplex
can occur either though a (< � 1)-simplex or though a (< + 1)-simplex
the higher-order Laplacian L[<] with < > 0 can be decomposed as

L[<] = L3>F=
[<] + LD?

[<] , (4.5)



Ajoint operator δ*m
We define the matrix  as the matrix representing , 


i.e. if                       then


From the definition it follows that 


Hence if  then 

B̄*[m+1] δ*m

G[m] = I, G[m+1] = I B*[m+1] = B[m+1]

B̄*[m+1] = G[m]B̄⊤
[m+1]G

−1
[m+1] = G[m]B[m+1]G−1

[m+1]

f′ = δ*mg, f′ = B̄*[m+1]g



Proof
We define the matrix  as the matrix representing , 


i.e. if                       then


We have the scalar product


If follows that for any f and g


Hence

B*[m+1] δ*m

⟨g, δm f ⟩ = gG−1
[m+1]B̄[m+1]f

⟨δ*mg, f ⟩ = g(B*)⊤
[m+1]G

−1
[m]f

gG−1
[m+1]B̄[m+1]f = g (B̄*[m+1])

⊤
G−1

[m]f

B*[m+1] = G[m]B̄⊤
[m+1]G

−1
[m+1] = G[m]B[m+1]G−1

[m+1]

f′ = δ*mg, f′ = B*[m+1]g



Weighed Hodge Laplacian

The weighted Hodge Laplacian obeys Hodge decomposition

42 Series Name

The coboundary operator acts o

Adjoint operator X⇤<

The adjont of the coboundary operator X⇤< : ⇠<+1 ! ⇠
< satisfies

h6, X< 5 i =
⌦
X
⇤
<6, 5

↵
for any 5 2 ⇠< and 6 2 ⇠<+1.

⇠
<+1 X< �� ⇠

< X<�1 ���� ⇠
<�1

⇠
<+1 X⇤<��! ⇠

<
X⇤<�1����! ⇠

<�1

(4.2)

4.2 Hodge Laplacian

The Hodge-Laplacians

The <-dimensional Hodge-Laplacian !< is defined as

!< = !
D?
< + !

3>F=
<

where up and down <-dimensional Hodge Laplacians are given by

!
D?
< = X

⇤
<X<,

!
3>F=
< = X<�1X

⇤
<�1.

More specifically, the elements of Ldown
? (? > 0) are given by

Ldown
< (8, 9) =

8>>>>>>>><
>>>>>>>>:

< + 1, 8 = 9 .

1, 8 < 9 , U
?
8 ¶ U

<
9 , U

<
8 ⇠ U

<
9 .

�1, 8 < 9 , U
?
8 ¶ U

<
9 , U

?
8 ⌧ U

<
9 .

0, otherwise.



Hodge decomposition for weighted Hodge 
Laplacians

The weighted Hodge Laplacians 





obey Hodge decomposition, i.e. 


Proof: 

Lup
[m] = B̄*[m+1]B̄[m+1] = G[m]B[m+1]G−1

[m+1]B
⊤
[m+1]

Ldown
[m] = B̄[m]B̄*[m] = B⊤

[m]G[m−1]B[m]G−1
[m]

Lup
[m]L

down
[m] = 0, Ldown

[m] Lup
[m] = 0

Lup
[m]L

down
[m] = G[m]B[m+1]G−1

[m+1]B
⊤
[m+1]B

⊤
[m]G[m−1]B[m]G−1

[m] = 0

Ldown
[m] Lup

[m] = B⊤
[m]G[m−1]B[m]G−1

[m]G[m]B[m+1]G−1
[m+1]B

⊤
[m+1] = B⊤

[m]G[m−1]B[m]B[m+1]G−1
[m+1]B

⊤
[m+1] = 0



Weighted Dirac operator



Weighted Dirac operator on a network

with

 D̂ = (
0 b*B̄*[1]

bB̄[1] 0 )

D̂2 = 𝓛 = (
L̂[0] 0

0 L̂[1])
b ∈ ℂ, |b | = 1 B̄*[1] = G[0]B̄⊤

[1]G
−1
[1]and

L̂[0] = B̄*[1]B̄[1], L̂[1] = B̄[1]B̄*[1]

with

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator

If the matrix ,  are the diagonal matrices with elements


 


The weighted Dirac operator is also called normalised Dirac operator and 
has eigenvalues bounded in absolute value by one

G−1
[1] G−1

[0]

G−1
[1](ℓ, ℓ) = wℓ /2

G−1
[0](r, r) = ∑

ℓ∈Er

wℓ

|λ | ≤ 1

F. Baccini, F. Geraci and G. Bianconi (2022)



Normalised Dirac operator of unweighted 
networks

If the weights of all the links are one, i.e.  we have


That the  matrices ,  are the diagonal matrices with elements


 


The normalised Dirac operator is given by 


wℓ = 1

G−1
[1] G−1

[0]

G−1
[1](ℓ, ℓ) = 1/2 G−1

[0](r, r) = kr

F. Baccini, F. Geraci and G. Bianconi (2022)

 D̂ = (
0 K−1B[1]/2

B⊤
[1] 0 )



Symmetric Normalised Dirac operator

The normalised Dirac operator  of an unweighted network


 


Can be symmetrized obtaining the Dirac operator with the same spectrum given by 


F. Baccini, F. Geraci and G. Bianconi (2022)

 D̃ =
0 K−1/2B[1]/ 2

B⊤
[1]K−1/2/ 2 0

 D̂ = (
0 K−1B[1]/2

B⊤
[1] 0 )



Normalised Dirac operator on a network

with

 D̂ = (
0 B̄*[1]

B̄[1]/2 0 )

D̂2 = 𝓛 = (
L̂[0] 0

0 L̂[1])

B̄*[1] = G[0]B̄⊤
[1]G

−1
[1] = K−1

0 B[1]

L̂[0] = B̄*[1]B̄[1], L̂[1] = B̄[1]B̄*[1]

with

F. Baccini, F. Geraci and G. Bianconi (2022)



Topological Data analysis  
Persistent Dirac for molecular representations

JJ Wee, G. Bianconi, K. Xia (2023) 



Lesson III: 
The Dirac operator  

on networks and simplicial complexes

Dirac operator on networks 
• Eigenvalues, Eigenvectors Chirality 
• Dirac equation (basic version with no associated algebra) 

Dirac operator on simplicial complexes 
Dirac operator & Algebra 
• Topological Dirac equation in 3 dimension  
• Topological Dirac equation in  3+1 dimensions 

Weighted and Normalised Dirac operator 
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Online workshop on the Dirac operator

"Dirac equation between discrete and continuous: new trends and applications 

Online workshop   
May 3-4 

co-organized by Delio Mugnolo (FernUniversität in Hagen) and myself 

we expect an exciting interplay of operator theory, noncommutative geometry,  
and network theory and applied topology. 

Website  
https://mat-dyn-net.eu/en/news/dirac-discrete-continuous-23


