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It is common for procurement managers to frequently organize auctions among qualified suppliers to stay

abreast of current supply-market pricing. The process of qualifying suppliers is expensive to the buyer; as a

result, a buyer often maintains a pool of qualified suppliers, the supply base. In traditional auction models,

the buyer uses the auction to find and award the business to the lowest-cost supplier in the supply base. In

practice, however, sole awards can alienate losing suppliers and cause them to defect from the supply base.

Therefore, to maintain the supply base — and thereby control supplier qualification costs — buyers often

employ split awards. Hence, there is a trade-off between the effective purchasing cost on the one hand, and

the qualification cost paid to maintain the supply base on the other. We model and investigate this trade-off

and characterize (1) the optimal split award that minimizes long-run costs (purchasing and qualification)

and (2) the optimal supply base size that the buyer should maintain. To characterize these results we assume

that supplier’s type (its relative per-unit cost) is i.i.d. across time, supplier’s total cost is increasing in its

type, supplier’s total cost and buyer’s virtual cost have single-crossing differences. We also determine that

higher per-supplier qualification cost leads to a smaller supply base but does not necessarily increase the

extent of multi-sourcing.
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1. Introduction

In rapidly changing industries, frequent evolution of products and technologies makes it difficult for

a procurement manager to discover the production costs of its suppliers. In such settings, buyers

often deploy reverse auctions (competitive bidding) as a vehicle for pricing supply contracts (Beall

et al. 2003). This is especially true in the procurement of commodity-type components in high-tech

industries, where buyers regularly organize auctions to stay abreast of the market. For example,

large electronics manufacturers often run quarterly auctions for procurement of commodity elec-

tronics components.

Procuring from low-cost suppliers is vital for most companies but it is equally important to

procure from qualified suppliers because supply failures can be devastating for a firm. For example,

petfood maker Menu Foods recalled in 2007 over 60 million packages of dog and cat food as a

result of unauthorized, toxic chemical additives introduced by one of its suppliers (Myers 2007). To

reduce the likelihood of such problems, buyers typically use stringent pre-qualifying procedures on
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suppliers to verify that the supplier is indeed capable of fulfilling the contract to the buyer’s satis-

faction. Indeed, it is a standard practice to allow only qualified suppliers to bid in auctions (Beall

et al. 2003). Qualifying suppliers is a time-consuming and costly process, involving the collection

of supplier information, factory audits, supplier development and evaluation. Furthermore, many

elements of qualifying a supplier (e.g., product testing and face-to-face meetings with supplier

engineers) typically fall on the technical workforce of the buyer firm. The buyer firm’s engineers

can be (and often are) reluctant to perform these tasks, viewing them as an unwelcome distraction

from their primary responsibilities of engineering design. From the perspective of the procure-

ment manager, this further introduces additional, albeit intangible, political costs in qualifying

new suppliers.

To avoid the high costs associated with supplier qualification, a buyer establishes a group of

suppliers, called the supply base, which it utilizes when awarding business. Thus the buyer has the

possibility of inviting the pre-qualified suppliers from its supply base when organizing an auction,

rather than spending time and money tracking down and qualifying new ones. For example, we

interacted with an electronics firm in which a typical supply base for a commodity input consisted

of around two to four suppliers.

However, once established, a supply base is not something that the buyer can necessarily take

for granted. At the electronics manufacturer mentioned above, procurement managers noted that

suppliers can disengage from the supply base. One of these procurement managers, who ran auctions

for short-term contracts, pointed out that suppliers were shopping around for other customers and

several were beginning to lock in contracts with these other customers. In particular, suppliers

who go away from an auction empty-handed might become unavailable in the future because they

have payrolls and bills to pay, and without business from the buyer must look elsewhere for other

customers. The same manager recalled a supplier who used to supply the PC industry eventually,

after winning little business, decided to switch gears and start focusing on customers in a different

industry (defense contracting).

Thus, there exists a critical tension in the buyer’s procurement strategy. On one hand, the buyer

wants to procure from the cheapest supplier. This can be achieved by organizing a winner-take-all

auction. On the other hand, this might alienate some suppliers from the supply base (those that

did not win the auction). If the buyer wishes to maintain healthy competition in future auctions,

this can saddle the buyer with a cost of qualifying new suppliers for these auctions. A trade-off

hence exists between getting a low purchase price today and getting low costs of qualifying new

suppliers for future auctions.

Splitting the business among multiple suppliers can help the buyer resolve this trade-off. By

giving business to a supplier, the buyer increases the chance that the supplier will be available for
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future competitive bidding events. It will be less likely, for example, to leave the supply base seeking

greener pastures. Such supplier behavior can be captured by relating the likelihood of suppliers

leaving the supply base to the amount of business awarded to them. Hence, splitting the auction

volume among a few suppliers gives the buyer a lever to maintain the supply base. In fact, we spoke

with some experienced procurement managers who often used split awards: they saw this approach

as especially attractive in cases where keeping suppliers in the supply base was a central concern.

For example, some auctions involved splits across up to four suppliers. However, since splitting the

award involved purchasing from more expensive suppliers so as to retain them in the supply base,

it was unclear when and how to best do this.

The objective of this paper is to provide a model capturing these relevant procurement issues,

shedding light on how to optimally organize split-award auctions. For this purpose, we model a

buyer that wants to minimize its long-run procurement cost, which includes the cost of purchasing in

each auction, and the cost of qualifying suppliers in the supply base. To this end, our paper designs

an optimal auction (mechanism) for awarding business that takes into account the future qualifying

costs if suppliers defect from the supply base. Such an auction, as we show, generally results in

split awards that multi-source among both low-cost and high-cost suppliers. We characterize how

the extent of multi-sourcing depends on the cost of qualifying new suppliers and on the sensitivity

of the likelihood of suppliers staying in the supply base as a function of the volume awarded. Our

model is the first to analyze the use of split awards as a lever for managing supply base maintenance

cost.

Choosing the supply base size is a critical decision for the buyer but it is not a priori obvious how

to best make this decision. On one hand the buyer can cast a wider net by having more suppliers

and hence make bidding more competitive, but on the other hand maintaining this larger pool

of suppliers encourages splitting the award amongst more suppliers which effectively makes the

bidding less competitive. We jointly solve the buyer’s problem of deciding the number of suppliers

it wants to qualify in the supply base and the amount of quantity it wants to allocate to each

supplier, so as to minimize its long-run procurement cost. Our approach to solving the buyer’s

problem is to first design an optimal mechanism with a given supply base size, and then find the

supply base size that minimizes the buyer’s long-run procurement costs. We show that the buyer

follows a simple and intuitive supplier qualification policy: in each period, it should qualify new

suppliers into the supply base until a certain size is reached. In addition, we provide insights on

how the optimal supply base size changes with the model parameters, as well as how the extent of

multi-sourcing changes. Regarding the buyer’s usage of multi-sourcing, even though split awards

are used to mitigate the cost of qualifying new suppliers, increasing the qualification cost may

actually reduce the buyer’s usage of multi-sourcing: This is because the buyer may respond to
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higher qualification cost by strategically reducing the size of its supply base, thereby diminishing

the opportunities to multi-source.

The outline of the paper is as follows. In §2 we review the literature. In §3 we describe the model.

We then solve in §4 the buyer’s mechanism design problem and find the optimal supply base size.

We also discuss the sensitivity of the optimal mechanism and supply base size with respect to

the model parameters and investigate the optimal mechanism and supply base composition with

heterogenous supplier types. Finally we conclude the paper in §5. All proofs are included in the

Appendix.

2. Literature Review

Our work is related to the auction literature, particularly works featuring multiple periods and

others featuring qualification costs. It also contains some elements related to the supply risk liter-

ature.

In the auction design literature, Myerson’s (1981) work was seminal in analyzing optimal auc-

tions. We closely follow his approach in characterizing the incentives for agents (suppliers) to

participate in the mechanism. However, in optimizing the principal’s (buyer) objective we differ

significantly from this body of work since our model analyzes optimal auctions in a multi-period

setting in contrast to the single period auctions that have typically been investigated. The dynam-

ics of multi-period auctions have seldom been explored. One exception is Klotz and Chatterjee

(1995a), which consider a two-period model for defense systems procurement where suppliers face

entry costs for bidding and exhibit production learning (cost reduction from one period to the

next). They argue that splitting the contract award has a two-fold advantage: First, it increases

market participation (in line with Klotz and Chatterjee 1995b) and second, it allows the buyer

to maintain second-period cost symmetry amongst its suppliers. Elmaghraby and Oh (2004) also

investigate procurement auctions in the presence of learning by doing. For a two-period model they

perform a comparative analysis between sequential independent auctions in each period and an

eroding price contract in which the buyer awards a multi-period contract where payment declines

over time at a pre-specified rate. Both papers focus on production learning in a multi-period non-

commodity procurement environment. We also provide a multi-period model, but focus instead on

commodity procurement where suppliers know how to make the simple commodity (like printed

circuit boards). In our model qualification cost and supply base maintenance are the key issues.

Note that even for simple commodity-type items, like wheat gluten, qualification checks are critical,

as evidenced by Menu Foods’ experience mentioned in the Introduction.

Another paper that considers sourcing decisions in a dynamic setting is Held et al. (2008), who

study a setting where awarding the business to a different sole-supplier in each period encourages
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suppliers to participate in the auctions. The buyer pays the same amount regardless of who it

awards the contract to, but a trade-off arises because the buyer incurs switching costs if the winning

supplier is not the incumbent. In our paper the buyer’s allocation decision also affects future

supplier participation, but in a setting where the buyer uses split awards, the price depends on who

is awarded the business, and the supplier return probabilities depend on the volume of business

they won in the previous period.

The cost of qualifying suppliers has been considered in the procurement literature only for a

single-period auction setting. Wan and Beil (2009), who study a buyer seeking to sole-source a

new contract to the lowest-price qualified supplier, propose post-auction qualification screening to

reduce the cost of qualifying losing suppliers. Unlike our paper, there is no multi-period aspect

and thus no need to establish a base of qualified suppliers. In contrast to the buyer incurring

the cost of including bidders (qualification cost), other papers have studied cases where instead

bidders are the ones who incur cost to enter the auction. In such a setting, McAfee and McMillan

(1987) find the equilibrium number of bidders who participate in the auction. Klotz and Chatterjee

(1995b) and Seshadri et al. (1991) investigate the performance of procurement auction mechanisms

when suppliers incur entry costs. They find that multi-sourcing outperforms single sourcing when

suppliers face entry costs, while, if suppliers do not face any entry cost, then the buyer would rather

single-source. In contrast, we find that multi-sourcing is optimal when the buyer incurs costs to

recruit bidders, even if the suppliers do not face entry costs.

Finally, our paper is related to the broader procurement literature on multi-sourcing. Multi-

sourcing has typically been analyzed in the procurement literature as a means to manage situations

where any given supplier may fail to deliver the units they are assigned to produce. For example,

Kleindorfer and Saad (2005), Tomlin (2006) and Federgruen and Yang (2009) discuss supply risk

mitigation through multi-sourcing; Babich et al. (2007), Yang et al. (2011) and Chaturvedi and

Mart́ınez-de-Albéniz (2008) consider supply diversification to mitigate supply disruption risk, in a

game-theoretic framework. In our setting, we also multi-source, but for an entirely different reason.

In our paper, suppliers always fulfill their delivery obligations, but do not necessarily stay in the

supply base over time. We multi-source not to ensure delivery, but rather to avoid the cost of

qualifying new suppliers into the supply base.

3. Model Description

We model a buyer that needs to purchase a fixed, divisible quantity Q of a homogenous product. It

can buy this quantity from the pool of suppliers (the supply base) that the buyer has at its disposal.

The buyer admits only qualified suppliers (those that have survived qualification screening) into

its supply base. Finding a qualified supplier involves locating a potential supplier, screening its
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qualifications (e.g., through product testing, site visits, audits, etc.), and repeating the process (if

needed) until finding a supplier who survives this screening. Potential suppliers can be identified

via numerous sources, e.g., supplier lists, industry contacts, receiving cold calls from suppliers, etc.,

but the qualifications still need to be ascertained through costly screening. We assume that the

buyer can qualify suppliers into its supply base from a large enough group of suppliers, that is,

the buyer does not run out of suppliers to qualify. The buyer’s expected cost to find a qualified

supplier is given by k. Intuitively, k’s size is related to the amount of qualification screening; for

example, a buyer might deploy extensive and costly qualification screening when buying a critical

direct input (large k), but be satisfied with lighter, less-costly screening when buying a non-critical

indirect good (low k). We assume that k does not change from period to period.

In addition, the buyer does not know the cost of any of the suppliers either before or after

qualifying them, because we interpret the qualification process as a way to avoid contracting with

incapable or unreliable suppliers, rather than a cost discovery attempt. We let ci denote the per unit

cost of supplier i, thus for a fraction of allocation qi made to supplier i (the actual allocation made

to supplier i will be Qqi units), the production (or opportunity) cost of supplier i will be ciqiQ.

Without loss of generality we normalize the quantity such that Q≡ 1 in the remainder of this paper.

ci is supplier i’s private information, and the buyer is only informed of its cumulative distribution

function (c.d.f.) F (c) and its probability density function (p.d.f.) f(c). The cost distribution is

assumed to have a finite mean. In addition, we assume that
F (c)

f(c)
is non-decreasing (that is, the

distribution is regular), which is a common assumption in the auction literature, satisfied by many

distributions, e.g., uniform, exponential, normal, gamma, etc. Moreover, also consistent with the

auction design literature, we assume that the costs of the suppliers are independent and identically

distributed (i.i.d.).

3.1. Single-Period Decision

First we consider a single-shot procurement event that starts with the buyer having no suppliers

in its supply base. The buyer wants to minimize its procurement cost which includes the cost

of qualifying suppliers and the cost of purchasing from the suppliers. For a given number n of

suppliers, the buyer can minimize its purchasing cost by organizing a second-price auction among

all these suppliers: the lowest-cost supplier will be awarded the entire allocation (that is, if supplier

i is the lowest-cost supplier then qi = 1) and will be paid the cost of the second lowest-cost supplier,

see Myerson (1981).1 To minimize its procurement cost the buyer needs to find the number of

suppliers it should qualify into its supply base. Let c= (c1, . . . , cn) denote the vector of unit costs of

1 Because the buyer needs to purchase Q units, its optimal reserve price is always the upper bound of the cost
distribution, meaning if n≥ 2 the optimal reserve price essentially plays no active role in the auction.
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n suppliers. Then the single-period expected procurement cost for the buyer would be Ecc(2,n)+kn,

where c(2,n) is the second-lowest cost amongst the n suppliers (the second-lowest order statistic)

if n≥ 2, and c(2,n) is equal to the upper limit of the support of the cost distribution (the reserve

price) if n= 1. We can then characterize buyer’s decision on the number of suppliers it needs to

qualify as

min
n≥1

⟨
Ecc(2,n) + kn

⟩
. (1)

In fact, when solving the problem above, the buyer will qualify suppliers until the marginal benefit

of including an extra supplier in the auction is less than the marginal cost of qualifying that

supplier. The following lemma states that the problem in Equation (1) is indeed convex in n.

Lemma 1. For n i.i.d. unit cost random variables with finite mean and
F (c)

f(c)
non-decreasing,

the expectation of the second order statistic is decreasing and convex in the sample size n.

Hence the buyer can now find the optimal number of suppliers that it needs to qualify for the

second-price auction. For example, when the per-unit costs of suppliers are uniformly distributed

in the interval [0,1], then the expected purchasing cost is Ecc(2,n) =
2

n+1
and hence the optimal

number of suppliers will be either

⌊√
2

k
− 1

⌋
or

⌈√
2

k
− 1

⌉
, the floor and ceiling of

√
2

k
− 1,

respectively.

3.2. Multi-period Procurement Decisions with Supplier Availability

In fast-moving industries where products and technology evolve quickly (e.g., electronics), buyers

often employ short-term supply contracts which are periodically re-allocated, e.g. quarterly. We

model this as a multi-period, infinite horizon setting where the buyer purchases a fixed quantity

Q= 1 of supply in each period and does not hold inventory across periods (due to rapid product

obsolescence).2 To stay abreast of rapidly changing production technologies and the current best

pricing, in such settings many buyers use auctions to re-bid the business in each period (Beall

et al. 2003). In each period, we assume that supplier i’s unit cost is drawn from a distribution

with c.d.f. F . This assumption implies that costs are independent across periods. In fact, what

really matters is that F captures suppliers’ relative costs, hence the model easily extends to cost

correlations across periods when, for example, in period t supplier i’s total cost equals a publicly

observed common term ct plus the private signal on relative costs ci governed by F . The common

term ct drops out of the analysis (because only the relative costs matter) hence our results would be

2 The analysis in this and the succeeding section can easily incorporate a random demand, Q, faced by the buyer,
provided that suppliers remain capable of meeting the buyer’s full demand and the demand is realized before the
auction but after the buyer qualifies suppliers into its supply base. However, if the demand realization occurs before
the buyer qualifies suppliers into its supply base, then the supply base decision would depend on the realized demand.
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robust to ct being period-dependent and correlated across periods. Our paper’s structural results

even extend if suppliers’ costs are correlated across suppliers within a single period.

In our model suppliers’ relative costs must be independent across periods, reflecting cases where

technology and production capabilities/efficiencies of suppliers change rapidly and the buyer there-

fore wishes to use auctions to stay abreast of the current best market pricing. This is the case in the

electronics industry, for example, where the buyer uses auctions to find which suppliers currently

offer the best pricing. There may be industries where product life cycles are very long, new technol-

ogy does not often get introduced, and suppliers’ relative costs remain very sticky across periods.

Our model would not apply to such cases, because when costs are very sticky across periods, there

is no need to auction in each period, and the buyer is better off just giving a long-term contract to

the lowest-cost supplier in the first period (since this supplier’s cost advantage will be sustained in

future periods). Accordingly, there is no need for a supply base and supply base maintenance in

such settings.

In this dynamic context, the buyer’s procurement decision depends on how the availability of

suppliers evolves over time. If the suppliers, once qualified, remain in the supply base forever then

the buyer would have to qualify the suppliers only at the beginning of the horizon and can organize

a winner-take-all auction in every period. The number of suppliers it qualifies at the beginning

can be characterized in a similar way to the optimization problem (1) by discounting the costs

associated with future auctions by a discount factor β < 1. However, there exists a risk that some

suppliers might drop out of the supply base due to some exogenous factors like leaving the industry

after being acquired, which might render them unavailable for the buyer. Therefore, there exists a

risk of supplier availability in the buyer’s supply base. We denote supplier i’s availability with a

random variable Ai = [0,1] which follows a Bernoulli distribution with 1 indicating that supplier i

remains in the supply base for the next period and 0 indicating supplier i leaves the supply base.

We can therefore characterize the risk of supplier availability by the expectation of Ai which we

call supplier i’s availability, denoted by αi. We consider Ai to be i.i.d. across all suppliers, i.e.,

αi = α.

For an i.i.d. Ai, the buyer’s procurement decision does not change significantly. It can still

organize a winner-take-all (second-price) auction in each period, but would now have to qualify

some suppliers in each period to compensate for the suppliers that dropped out of the supply base.

For an infinite horizon, we solve the buyer’s problem of finding the number of suppliers that it

needs to qualify in each period. Let A= (A1, . . . ,An) denote the vector of random variables Ai for

n suppliers. The buyer’s decision can then be characterized through Bellman’s equation as follows:

J(na) = min
n≥na

⟨
Ecc(2,n) + k(n−na)+βEAJ

(
n∑

i=1

Ai

)⟩
, (2)
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where J(na) represents the buyer’s cost-to-go when it starts a period with na suppliers available

in its supply base. The following theorem characterizes the optimal number of suppliers that the

buyer should qualify into its supply base.

Theorem 1. For Ai i.i.d., a qualify up-to policy is optimal, i.e., there exists n∗ such that, for

any na suppliers available to the buyer, it should further qualify max(0, n∗−na) additional suppliers.

The qualify up-to level n∗ is the solution of

n∗ =min(n|C∞(n)−C∞(n+1)≤ 0), (3)

where

C∞(n) =Ecc(2,n) + k(1−β)n+ kβnᾱ (4)

and where ᾱ= 1−α.

From Equation (3) we can directly infer that the optimal supply base size decreases with the

qualification cost k (because
d(C∞(n)−C∞(n+1))

dk
≤ 0 for all n). Indeed, for a qualification cost

of 0, the buyer would want to keep an infinite supply base size and, conversely, for a very high

qualification cost the buyer would want to keep a small supply base. Also from Equation (3), we

can infer that the supply base size is increasing in the discount factor β, that is, the more the

buyer discounts its future costs (lesser the β) the smaller the supply base it would keep. Indeed,

if the buyer completely discounts its future cost (β = 0) then it would carry the smallest supply

base since there is a limited advantage of carrying an extra supplier. In fact for β = 0 the buyer’s

problem is similar to the single-period problem in §3.1. Finally, the supply base size increases as

the availability of suppliers increases (α increases). Indeed, if the suppliers are always available and

never leave the supply base then the buyer would want to carry a large supply base (since it does

not have to worry about any future qualification costs). Conversely for suppliers that are never

available in the next period, that is α= 0, the buyer would carry the smallest supply base. In fact

with α= 0, the problem reduces to the buyer’s single-period problem discussed in §3.1.

3.3. The Impact of Allocation on Supplier Future Availability

Besides the exogenous factors mentioned in §3.2, it is not uncommon that suppliers who lose in

the bidding process decide not to participate in future auctions. Consider the example given in the

Introduction: The supplier switches to another industry after winning little business in the buyer’s

supply base. Essentially, the supplier, who gets less business from the buyer, is saddled with excess

capacity and therefore explores options outside of the buyer’s supply base. The higher the excess

capacity that the supplier has, the higher the likelihood that the supplier finds it beneficial to

switch from the buyer’s supply base to another supply base. We present here a model that captures
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time

Suppliers joins
the supply base

Buyer announces
auction rules

Suppliers bid

Buyer allocates
and makes payment

Suppliers explore
outside options 

Each supplier decides to
stay in or leave the

buyer’s supply base, based 
on its absolute expected gains 

Figure 1 Timeline of events in a typical auction period.

the interaction between the buyer’s present allocation to a supplier and its future availability in

the buyer’s supply base. This model yields a supplier total cost function and availability function.

Assume that a supplier i commits a capacity Wi ≥ 1 for the buyer’s supply base. Suppose that, in

expectation, the other industry offers the supplier the same payoff for its capacity Wi (after it has

left the buyer’s supply base) as the supplier would get by being in the buyer’s supply base. Hence,

before the auction (ex-ante) the supplier has no incentive to switch over. However, after getting

qi amount of business from the buyer’s auction in a given period, the supplier would explore how

profitable it is to utilize its remaining capacity Wi − qi for that period by exploring other options,

e.g., it can respond to exploratory RFQs from other potential customers. In doing so it formulates

an estimate of the per-unit margin pout,i − γci that it expects to get in that period if it re-tools

its capacity for another customer. Parameter γ moderates the impact of the supplier’s cost on the

margin it can make outside the supply base; for example, the dependence is nonexistent if γ = 0,

and negative if γ > 0. We assume that switching over to another supply base would cost the supplier

a fixed re-tooling cost of Ti. (Ti can also incorporate a profit requirement below which switching

is not considered worthwhile.) Therefore, the net expected benefit that the supplier can make in

that period by switching over to another supply base is given by (pout,i − γci) · (Wi − qi)− Ti. In

Figure 1, we graphically depict the various events in a typical auction period.

We assume that ex-ante (before the buyer’s auction and before the supplier participates in

exploratory RFQs) the supplier does not know pout,i, but both the buyer and the supplier share the

same prior over the distribution Fout,i(p) of Pout,i. One can then characterize the likelihood of the

supplier making a net benefit by switching over to another buyer’s supply base as P((Pout,i−γci) ·

(Wi−qi)−Ti ≥ 0). It might happen that a supplier might not get qualified by the other buyer after

it has re-tooled its capacity, in which case the supplier might look for an alternate option or try

to re-enter the buyer’s supply base (perhaps after re re-tooling its capacity). However, for model

tractability we assume that the likelihood of a supplier not getting qualified is negligibly small.
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Hence, the supplier’s likelihood of leaving the buyer’s supply base would be the same as its likelihood

of making a positive profit by switching over to another buyer’s supply base, i.e., ᾱi(qi, γci) =

P((Pout,i − γci) · (Wi − qi)− Ti ≥ 0). Indeed, ᾱi(qi, γci) is decreasing in the amount of business qi

that the supplier gets from the buyer. Moreover, we denote by Ω(qi, γci) the expected value of the

maximum of 0 and the additional surplus that the supplier i makes by switching over to another

supply base, i.e., Ω(qi, γci) =EPout,i
max(0, (Pout,i−γci) · (Wi−qi)−Ti). Hence Ω(qi, γci) represents

the value of the supplier’s outside option if it gets allocated qi amount of business by the buyer.

One can therefore express Ω(0, γci)−Ω(qi, γci) as the opportunity cost incurred by the supplier in

producing qi amount of goods for the buyer. We use Si(qi, ci) = ci · qi +Ωi(0, γci)−Ωi(qi, γci) to

denote supplier i’s total cost, which is the sum of its production and its opportunity cost.

Finally, we define B(q, c)≡ ∂S(q, c)

∂c
· F (c)

f(c)
+S(q, c)+ kβᾱ(q, γc). We will see later that B(qi, ci)

is the virtual cost that the buyer incurs by giving an allocation qi to a supplier with a per-unit cost

of ci (note that this virtual cost includes the expected cost to qualify a new supplier if the supplier

leaves). We make three assumptions on the cost structure of the suppliers: (a) S(q, c) is increasing

in c; (b)
∂2S(q, c)

∂q∂c
≥ 0 and (c)

∂2B(q, c)

∂q∂c
≥ 0. Assumption (a) implies that a supplier’s total cost

is increasing in its type. Assumptions (b) and (c) imply that supplier’s total cost and the buyer’s

virtual cost have single crossing differences, a widely used assumption in the mechanism design

literature. The single crossing conditions enables the buyer to perfectly discriminate suppliers

having different types and hence avoids bunching. Moreover, assumptions (a)-(c) are satisfied when,

for example, γ ≤ 1 and Pout,i is exponentially distributed or uniformly distributed.

To keep the model parsimonious, we assume that Wi =W , Ti = T for all i and Pout,i = Pout is

identically distributed though not necessarily independent across suppliers (in §4.6 we relax these

assumptions). This allows us to model suppliers’ availability Ai as being identically distributed

with the probability of staying denoted by α(qi, γci). Note that Ai need not be independent, since

Pout can be correlated across suppliers.

Thus far we have presented a model capturing the interaction between the buyer’s present

allocation to a supplier and the supplier’s future availability in the buyer’s supply base. The

model yielded supplier total cost function S(q, c) and availability function α(q, γc). We conduct our

theoretical analysis using a structure that relies solely on S and α (of course satisfying assumptions

(a-c)) rather than the specifics of the underlying model. In other words, the above model can

be viewed as a convenient expositional tool to quickly elucidate S and α (we will also use it

for generating numerical experiments in later sections). However, one may fit other models of

the supplier total cost S(q, c) and availability α(q, γc) for different situations, and — as long as

assumptions (a-c) hold — still use our subsequent analysis.



Authors’ names blinded for peer review
12 Article submitted to Management Science; manuscript no. MS-10-01739.R1

With suppliers’ availability being dependent on the buyer’s allocation, the buyer faces potential

depletion of its supply base if it does not provide enough business to all the suppliers. This implies

that using a winner-take-all second-price auction may no longer be a good strategy, in contrast

with §§3.1-3.2. In order to reduce the future cost of qualification, the buyer might want to multi-

source in this situation. Indeed, a winner-take-all auction would result in the minimum cost of

purchasing. However, it would also result in a high likelihood of depletion of the supply base and

therefore a high cost of qualifying suppliers for the next period. On the other hand, an equal split

of business amongst the suppliers would result in a low likelihood of depletion of the supply base

(and therefore low cost of qualifying new suppliers for the next period) but would result in high

purchasing costs. To balance this trade-off, the buyer needs to devise an allocation rule — that

does not necessarily result in single sourcing — such that buyer’s present and discounted future

procurement cost (qualifying and purchasing cost) is minimized. Moreover, the buyer also needs

to decide the optimal number of suppliers it wants to qualify in its supply base in each period. We

jointly solve the buyer’s problem of designing the procurement mechanism and finding the optimal

number of suppliers it needs to qualify. For this purpose, we first formulate and solve the buyer’s

mechanism design problem with a given supply base size. We then find the optimal supply base

size that will minimize the total cost for the buyer, under the optimal mechanism.

4. Controlling Qualification Costs through Split Awards

As pointed out above, the buyer might no longer want to organize a winner-take-all second-price

auction, since that would result in high future qualification costs. In order to minimize its present

and future procurement costs, the buyer needs to find an appropriate rule that maps supplier bids

to their allocations and payments.

4.1. Optimal Mechanism Design

For finding such an optimal rule, we use the mechanism design methodology, see Myerson (1981).

Note that because costs are independent over periods, we can focus on the mechanism design

problem for each period separately. We consider only truth-revealing mechanisms which by the

revelation principle include an optimal mechanism, if such an optimal mechanism exists. Specif-

ically, we consider sealed-bid mechanisms in which the suppliers bid their true marginal costs

c= (c1, . . . , cn). A mechanism is described by the rule, announced by the buyer prior to the bidding,

that maps suppliers’ bids to their allocations and payments. Let such a mechanism be denoted

by q(c),z(c) where q(c) is the vector of allocations made to suppliers and z(c) is the vector of

payments made to suppliers, as functions of their bids c. Because we focus on truth-revealing

mechanisms, we require that the buyer designs the allocation and payment rule such that suppliers

have the incentive to reveal their true costs.
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For the mechanism to be optimal, it should minimize the buyer’s present and future cost. We

denote this cost by J(na), where na is the number of suppliers available at the beginning of the

period. The buyer’s optimal cost-to-go can be represented by Bellman’s equation as

J(na) = min
n≥na

⟨
min

z,q|
∑n

i=1 qi=1
Ec

{
n∑

i=1

zi(c)+ k(n−na)+βEAJ

(
n∑

i=1

Ai(qi(c), ci)

)}⟩

s.t. (z,q) are truth-revealing.

(5)

To find the optimal solution for Equation (5), we first find the optimal mechanism with a given

supply base size and then find the optimal supply base size under the optimal mechanism. Given

that the buyer has n suppliers in its supply base, the buyer’s mechanism design problem can be

written as

min
z,q|

∑n
i=1 qi=1

Ec

{
n∑

i=1

zi(c)+βEAJ

(
n∑

i=1

Ai(qi(c), ci)

)}

s.t. (z,q) are truth-revealing.

(6)

We next present the conditions that the mechanism needs to satisfy in order to induce truth

revelation. As in the literature (see Myerson 1981), we assume that each supplier is risk-neutral;

consistent with the model introduced in §3.3 the utility Ui of supplier i can be written as

Ui(c) = zi(c)−Si(qi(c), ci) (7)

Note that Ui is formulated as supplier’s relative utility, which is the difference between supplier’s

utility zi(c)− ciqi(c)+Ω(qi(c), ci) if it participates in the auction and its utility Ω(0, ci) if it does

not participate in the auction.

For the mechanism (z,q) to be truth-revealing, it should satisfy Individual Rationality (IR) and

Incentive Compatibility (IC) constraints.

(IR) Ui(c)≥ 0 for all c,
(IC) Ui(c)≥ zi(ĉi,c−i)−Si(qi(c−i, ĉi), ci) for all ci, ĉi,c−i.

As one can see, we consider the IR and IC constraints in the dominant strategy equilibrium. In

other words, a supplier truthfully reveals its cost irrespective of other suppliers’ costs. Alternatively

one could also formulate the IR and IC constraints in the Bayesian-Nash equilibrium, that is, a

supplier’s truthful revelation is its best strategy only in expectation over other suppliers’ costs.

Indeed, compared to the Bayesian-Nash equilibrium, a dominant strategy equilibrium is a more

stringent condition on the mechanism design problem. However, using the results of Mookherjee

and Reichelstein (1992) (specifically Proposition 3), one can show that for our problem an optimal

mechanism in the dominant strategy equilibrium gives the same expected surplus to the agents and
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the principal as would an optimal mechanism in the Bayesian-Nash equilibrium.3Therefore, there

is no loss of optimality in assuming that suppliers’ truthful revelation is a dominant strategy in

equilibrium. Following the approach of Dasgupta and Spulber (1989), the following lemma provides

a simpler characterization of truth-revealing mechanisms.

Lemma 2. (z,q) represents a truth-revealing mechanism if

1. Ui(c) =Ui(∞,c−i)+

∫ ∞

t=ci

∂Si(qi(t,c−i), c)

∂c

∣∣∣∣∣
c=t

dt;

2. qi(ci,c−i) is decreasing in ci for all ci,c−i;

3. Ui(c) = zi(c)−Si(qi(c), ci);

4. Ui(c−i,∞)≥ 0.

Employing the usual methods, it can be shown that the (IC) condition also implies point (1) of

Lemma 2. We now re-formulate the buyer’s problem in Equation (6) by substituting the value of

zi from point (3) and the value of Ui from point (1) of Lemma 2 and taking Ui(c−i,∞) = 0 (which

does satisfy point (4) of Lemma 2). We can then express the buyer’s problem as the optimization

of the objective function with respect to the allocation q alone, subject to point (2) in Lemma

2. Given an optimal q, the payment scheme z can then be found through point (3) of Lemma 2,

which guarantees that the IC and IR constraints are satisfied. Taking this approach, the buyer’s

mechanism design problem can be written as

min
q|

∑n
i=1 qi=1

Ec

{
n∑

i=1

⟨∫ ∞

t=ci

∂Si(qi(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+Si(qi(c), ci)

⟩
+βEAJ

(
n∑

i=1

Ai(qi(c), ci)

)}
(8a)

s.t. (q) satisifies condition (2) of Lemma 2. (8b)

To minimize the program in (8), we first relax the associated constraint (8b) (which we verify

later). We then characterize the cost-to-go function J(.) by reformulating Bellman’s equation in

Equation (5) as

J(na) = min
n≥na

⟨
min

q|
∑n

i=1 qi=1
Ec



n∑
i=1

⟨∫ ∞

t=ci

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+Si(qi(c), ci)

⟩

+βEAJ

(
n∑

i=1

Ai(qi(c), ci)

)
+ k(n−na)


⟩
. (9)

This formulation allows us to establish that a stationary policy is optimal.

3 Proposition 3 of Mookherjee and Reichelstein states that an allocation rule q would give the same expected utility
to suppliers in both Bayesian-Nash equilibrium and dominant-strategy equilibrium as long as suppliers cost function
satisfies weak single crossing property and the allocation function is decreasing in supplier’s type. From assumption
(b) we know that suppliers’ cost satisfy the weak single crossing property and we will see in Theorem 2 that the
allocation rule q is decreasing in supplier’s type.
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Lemma 3. If the buyer starts the horizon with 0 suppliers then a stationary policy in which it

qualifies up-to n∗ suppliers in each period is optimal.

Hence, assuming that the buyer starts the process with an empty supply base (0 suppliers), we

can apply the stationary policy to Equation (9) and rewrite it as

J(0) =
1

1−β
·min

n

⟨
min

q|
∑n

i=1 qi=1
Ec

n∑
i=1


∫ ∞

t=ci

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+Si(qi(c), ci)

+kβᾱ(qi(c), γci)

+ kn(1−β)

⟩
.

Hence the buyer’s problem can be characterized as

min
n

⟨
min

q|
∑n

i=1 qi=1
Ec

n∑
i=1


∫ ∞

t=ci

∂Si(qi(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+Si(qi(c), ci)

+kβᾱ(qi(c), γci)

+ kn(1−β)

⟩
. (10)

Therefore, given an n (qualify up-to level), the buyer’s mechanism design problem can now be

written as

min
q|

∑n
i=1 qi=1

Ec

n∑
i=1

{∫ ∞

t=ci

∂Si(qi(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+Si(qi(c), ci)+ kβᾱ(qi(c), γci)

}
(11)

which is equivalent to

min
q|

∑n
i=1 qi=1

Ec

n∑
i=1

{
∂Si(qi(c), c)

∂c

∣∣∣∣∣
c=ci

· F (ci)

f(ci)
+Si(qi(c), ci)+ kβᾱ(qi(c), γci)

}
(12)

Now, we optimize Equation (12) over each sample realization c, which reduces the mechanism

problem to

min
q|

∑n
i=1 qi=1

n∑
i=1

B(qi, ci) (13)

Note that for problem (13) to be equivalent to (8), we will need to verify the feasibility of this

mechanism, which we do below, namely, that the resulting allocations qi satisfy the constraints

(8b).

Theorem 2. Given a qualify up-to level n in an infinite horizon problem, (z,q) represents an

optimal mechanism in dominant strategy equilibrium if

q(c) = argmin
q s.t.∑ qi=1

n∑
i=1

B(qi, ci) (14)

zi(c) = Si(qi(c), ci)+

∫ ∞

t=ci

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt. (15)
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Figure 2 Optimal allocations with n= 2, β = 0.9, W = 1, T = 1, γ = 1, Pout is Exponentially distributed with

mean
1

4
and suppliers marginal cost realizations are taken from uniform distribution in the interval (0,1).

The objective in Equation (14) is convex if B(q, c) is convex in q.4 In that case we can characterize

the optimal allocations through first-order Karush-Kuhn-Tucker (KKT) conditions, that is,

∂B(qi, ci)

∂qi
= λ+ νi

where νi ≥ 0, qi ≥ 0, νi · qi = 0 and λ is such that
n∑

i=1

qi = 1 for i= 1, . . . , n
(16)

Optimal mechanism uses split awards

Note that B(q, c) in the buyer’s optimization program in Equation (14) is composed of two terms,

namely
∂S(q, c)

∂c
· F (c)

f(c)
+S(q, c) and kβᾱ(q, γc). The former term is increasing in (q, c), however, the

latter term, kβᾱ(q, γc), is decreasing in q and not necessarily concave in allocation q and therefore

can impose a penalty on winner-take-all allocations. Moreover, this penalty is increasing in the cost

of qualifying suppliers, k. In Figure 2 we show the change in the division of allocations between the

suppliers as k increases. Observe that the allocations even out (q1 converges to 0.5) more slowly

when the difference between the per-unit costs of suppliers is higher. Also, note that the buyer

does not always multi-source. In fact when the relative magnitude of k is small compared to the

cost of the suppliers, then the marginal savings in supply base maintenance cost achieved from

multi-sourcing are less than the additional cost of purchasing from a more expensive supplier. This

affect gets more pronounced as the difference between the cost of suppliers increases and therefore

we see that the buyer single sources for a wider range of k as the difference in the cost of the

suppliers increases.

4 For example, this is true when Pout is exponentially distributed with mean
1

λ
and when, for γ = 1, T ≥ 2kβ

kβλ/W − 1
.
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Allocations depend on cost spread, not just cost ordering

Also note that the optimal mechanism in Theorem 2 is designed for a dominant-strategy equi-

librium. This enables the mechanism to be easily implemented. For example, one can use a clock

auction. In this setting, the auction begins at a high calling price and descends according to a price

clock. At each price level, suppliers decide whether to stay in the auction or permanently drop

out. After all suppliers have dropped out, the buyer applies the allocation rule in Equation (14)

and the corresponding payment in Equation (15) according to the drop-out bids (which play the

role of c). In a traditional winner-take-all descending clock auction (reverse English auction), it is

a dominant strategy for suppliers to drop out at their true cost, unless every other supplier has

dropped out, at which point the lowest-cost supplier should also drop out. In contrast, with our

proposed auction rules, each supplier — including the lowest-cost supplier — has the incentive to

stay in the auction exactly until its true cost is reached. This is because the quantity and profits

for a supplier not only depend on its rank in the auction (being the lowest-cost supplier or not),

but also on the magnitude of the cost difference with other suppliers.5

4.2. Optimal Supply Base Size

Having solved the mechanism design problem, we now need to find the optimal qualify up-to level

n∗ up to which the buyer should qualify suppliers in every period, under the optimal mechanism.

For this purpose, we need to solve the buyer’s objective in Equation (10). Let

Cbuyer(n) =Ecmin
q

n∑
i=1

B(qi(c), ci)+ k(1−β)n (17)

represent the value to be minimized in n from Equation (10). From Equation (10) and the definition

of Cbuyer(n) in Equation (17) we can characterize the marginal effect of the (n+ 1)th supplier as

Cbuyer(n)−Cbuyer(n+1). In the Theorem below we show that this marginal effect is decreasing in

the number of suppliers n.

Theorem 3. The marginal value of an extra supplier Cbuyer(n)−Cbuyer(n+1) is decreasing in

n and the optimal qualify up-to level n∗ can be characterized as

n∗ =min(n|Cbuyer(n)−Cbuyer(n+1)≤ 0) . (18)

5 As one would intuitively expect, when k= 0, the suggested implementation, although different from the traditional
reverse English auction, would result in the same outcome, namely that the lowest-cost supplier receives the entire
allocation, and its payment is equal to the second-lowest cost.
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4.3. Sensitivity of the Supply Base Size

In this section we discuss the sensitivity of the optimal supply base size, as characterized in Equa-

tion (18), with respect to the model parameters. Specifically, we discuss how the optimal supply

base size changes with changes in these parameters. To characterize the effect of these parameters

on the supply base size, we find the change in C∞(n)−C∞(n+ 1) as the model parameters are

changed. Indeed, if the marginal savings in the buyer’s cost-to-go upon adding an extra supplier

are increasing with the parameters, then the optimal size of the supply base increases.

Lemma 4. The optimal supply base size n∗ is decreasing6 in the qualification cost k.

Indeed, a higher k would imply a higher qualification cost for the added supplier and therefore the

marginal benefit of an additional supplier will decrease as k increases. Also, as one would expect

n∗(k= 0)≥ n∗(Pout = 0)≥ n∗(Pout =∞) = n∗(k=∞) = 1.

In Figure 3 we numerically investigate the sensitivity of the supply base as one or more of the

supply base parameters are changed. We typically find that the supply base size is increasing in cost

of re-tooling capacity, T , and is decreasing in the mean value of the outside option Pout. Indeed,

with higher re-tooling cost or lower mean of Pout, the suppliers are less likely to leave the supply

base which reduces the supply base maintenance cost and hence increases the marginal value of

an extra supplier. However, note that even when suppliers do not ever leave (e.g., Pout is zero or

T is infinity), the buyer will not wish to form an infinitely large supply base, due to the initial

qualification costs of forming the supply base.

4.4. Describing the Extent of Multi-Sourcing in the Optimal Mechanism

Finally, we would like to understand how often and to what extent the buyer diversifies its purchases

across the supply base. For this purpose, we consider the allocation given to the lowest-cost supplier.

Let qmax(c1, . . . , cn) =max
i

qi(c1, . . . , cn) denote the allocation to the cheapest supplier (who obtains

the largest allocation).7 Define the concentration of allocation as q̄max =Ecqmax(c1, . . . , cn). Similar

to §4.3, we analyze the effect of changing the model parameters on the concentration of allocation.

Changing parameters not only affects the concentration of allocation directly but also indirectly

through the change in supply base size that is brought about by changing these parameters. More-

over, the direct and the indirect effects need not move the concentration of allocation in the same

direction, and therefore one might expect non-monotonicity in the overall effect when an optimal

supply base size is maintained.

6 In this paper, we use increasing and decreasing in the weak sense.

7 One could employ other concentration measures, such as Herfindahl-Hirschman Index (HHI),
∑n

i=1 q
2
i . Compara-

tively, qmax is easier to analyze and is similar to HHI: both vary between 1
n

and 1 and qmax = 1
n

implies perfect
diversification and qmax = 1 implies sole-sourcing.
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Figure 3 Optimal supply base size plotted over the (T,λ) plane with k= 1 (left panel), (T,k) plane with λ= 1

(middle panel), and (λ,k) plane with T = 1 (right panel). In all panels, supplier costs are uniformly distributed

over [0,1], Pout is exponentially distributed with mean
1

λ
, γ = 1, W = 1 and β = 0.9.

4.4.1. Effect of Supply Base Size. First, we investigate the effect of supply base size on

the concentration of allocation.

Lemma 5. The concentration of allocation q̄max is decreasing in the size of the supply base n.

The intuition behind Lemma 5 is that, as the supply base size increases, the average gap between

the cost of two consecutive suppliers decreases and as a result the allocation too is less concentrated.

To summarize, all else being equal, buyers with a larger supply base will tend to move away from

winner-take-all allocations.

4.4.2. Effect of Qualification Cost. Next, we consider the effect of changing the cost of

qualifying suppliers, k, on the concentration of allocation. We show that, as k becomes large, it

tends to a limit split award that depends on γ. Recall that γ moderates the impact of the supplier

cost on the margin it can make outside the supply base.

Lemma 6. For a fixed supply base size n, as the qualification cost k increases, the concentration

q̄max tends to a value equal to
1

n
when γ = 0 and ᾱ(q,0) is convex, and at least

1

n
otherwise.

The intuition behind Lemma 6 is that the buyer would want to spread its allocation to retain most

of its suppliers as k increases. It would do so in hopes of avoiding high costs of qualifying suppliers

in future periods. As a result, for large enough k, the buyer would split its business equally amongst
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its suppliers. One can also show that the concentration of allocation is decreasing in k under certain

conditions. 8 Interestingly, we saw in Lemma 4 that the supply base size decreases with k, which

in conjunction with Lemma 5 would imply that the concentration of allocation should increase.

However, the supply base size takes integer values. This implies that in between integer changes

of supply base size, increasing k typically decreases the concentration of allocation; and at the

value where a marginal increase in k decreases the supply base size, the concentration of allocation

jumps up. We show this phenomenon for γ > 0 in Figure 4. Indeed, for large enough values of k the

concentration of allocation converges to 1. To summarize, more expensive qualification pushes the

buyer away from winner-take-all allocations, until qualification costs become so onerous that the

buyer responds by shrinking its supply base. Hence there are two effects at play here: the direct

effect typically reduces concentration as k increases, while the indirect effect reduces the supply

base size which triggers an increase in the concentration of allocation. The combination of these

two effects results in concentration of allocation being non-monotonic in k.

4.5. Split Award vs. Winner-Take-All Sourcing

Finally, we compare the performance of the optimal split-award sourcing against the myopic policy

of using winner-take-all sourcing in each period. For this, we calculate the percentage change in

the buyer’s long-term procurement cost when it moves from using the winner-take-all sourcing to

using the optimal split-award mechanism and maintaining an optimal supply base size as given by

Equation (18). In Figure 5 we illustrate the resulting savings in the buyer’s long-term procurement

cost as cost of qualifying supplier is changed. We find that benefits of using split awards as compared

to winner-take-all sourcing are typically decreasing with respect to the cost of qualifying suppliers.

In fact, there is clearly an advantage to multi-sourcing when k is moderate, but when k→ 0 there

is no advantage to multi-sourcing (an infinite supply base is optimal) and when k→∞ again there

8 When S(q, c)+
∂S(q, c)

∂c
· F (c)

f(c)
is concave in q, is cross derivative with respect to q and c is positive and when B(q, c)

is convex in q.
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distributed with mean 1 and costs are uniformly distributed in [0,1].

is no advantage to multi-sourcing (a single-supplier supply base is optimal and hence sole-sourcing

is de facto optimal).

4.6. Supply Base Composition with Heterogenous Supplier Types

We explore here what recommendations can be made when supplier types are heterogeneous. For

this purpose, we consider r type of suppliers and use subscript j = 1, . . . , r to depict the type of the

supplier. For a supplier belonging to a type-j, its per unit cost of producing good is distributed

according to c.d.f. Fj. They also have different availabilities equal to αj(q, c). They also have

different expected value of switching over profit equal to Ωj(q, c). Finally, they can have different

qualification costs kj too.

We are interested in understanding how the buyer should design its supply base in this case,

namely the number of each type of suppliers it qualifies for the supply base. Again, we focus on the

infinite horizon setting, where the optimization problem can be written, similar to Equation (9)

(by relaxing condition (2) of Lemma 2), as

J(n1,a, . . . , nr,a) = min
n1≥n1,a

...
nr≥nr,a



min
q1,...,qr

s.t.∑r
j=1

∑nj
i=1 qj,i=1

Ec1
...
cr



r∑
j=1

nj∑
i=1

⟨∫ ∞

t=cj,i

∂Sj,i(qj,i(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+

Sj,i(qj,i(c), cj,i)

⟩
+

βEA1,...ArJ

(
n1∑
i=1

A1(q1,i), . . .

nr∑
i=1

Ar(qr,i)

)


+
r∑

j=1

kj(nj −nj,a)


.

(19)

Lemma 7. If the buyer starts the horizon with 0 suppliers, then a stationary policy in which it

qualifies up-to n∗
j of type-j suppliers for j = 1 . . . r is optimal.

Therefore, similar to Equation (13), the buyer’s mechanism problem can be written as



Authors’ names blinded for peer review
22 Article submitted to Management Science; manuscript no. MS-10-01739.R1

min
q1,...qr

s.t.
∑r

j=1

∑nj
i=1 qj,i=1

Ec1
...
cr

[
r∑

j=1

nj∑
i=1

Bj,i(qj,i, cj,i)

]
.

Similar to Theorem 2, it can be verified that the above allocations indeed satisfy condition (2)

of Lemma 2. The optimal mechanism can then be characterized by the corollary stated below.

Corollary 1. In an infinite-horizon problem z,q represents an optimal mechanism in domi-

nant strategy if and only if it satisfies

q(c) = min
q1,...,qr

s.t.
∑r

j=1

∑nj
i=1 qj,i=1

[
r∑

j=1

nj∑
i=1

Bj,i(qj,i, cj,i)

]
. (20)

and the payment zi made to each supplier is given by Equation (15).

To solve the buyer’s optimal supply base size problem we follow the approach of §4.2. Denote

Cbuyer(n1, . . . , nr) =Ec1
...
cr

min
q1,...,qr

s.t.
∑r

j=1

∑nj
i=1 qj,i=1

[
r∑

j=1

nj∑
i=1

Bj,i(qj,i, cj,i)

]
+

r∑
j=1

kj(1−β)nj. (21)

Then the buyer’s optimal supply base size decision can be characterized as min
n1,...,nr

Cbuyer(n1, . . . , nr).

Let n∗
hetero,j represent the optimal number of suppliers of each type in the supply base. Also denote

n∗
j as the optimal number of suppliers of each type if the supply base consisted of only type j

suppliers, i.e., n∗
j can be found from the solution of Equation (18). The following corollary applies

as a direct extension of Theorem 3.

Corollary 2. n∗
hetero,j ≤ n∗

j for all j = 1 . . . r.

Figure 6 illustrates the change in the supply base composition (the change in supply base size)

when r = 2, as the cost of qualifying a given type (type-v) of suppliers is changed. We find that

the buyer maintains a homogenous supply base (consisting of a single type of suppliers) if the

attributes of a particular type of suppliers move to the extreme relative to the attributes of the

other type of suppliers. Specifically, we find that the proportion of a given type of suppliers in the

composition of the supply base is decreasing in their qualification cost.

5. Conclusion

In this paper, we analyzed a buyer’s auction design problem when it needs to organize auctions

repeatedly to keep abreast of the current best supply market pricing. To have suppliers bid in

these auctions the buyer incurs a cost (of qualifying suppliers) and therefore maintains a supply

base to avoid qualifying new suppliers for each auction. However, suppliers tend to fall out of this

pool if they are not given adequate business and therefore the buyer faces a trade-off between
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Figure 6 Optimal supply base size as a function of kv, with β = 0.9, γ = 1, ku = 1.1. Costs are uniformly

distributed for type-u and type-v suppliers on the intervals [0,1] and [0.003,1.003] respectively. W = 1 and T = 3

for both type-u and type-v suppliers. Finally, Pout is exponentially distributed with mean 1 for type-u suppliers

and with mean 1/1.1 for type-v.

giving adequate business to each supplier or being forced to qualify new suppliers in consequent

periods. We analyze this trade-off and characterize the optimal split-award mechanism that the

buyer should use in each period. We find that a buyer should typically multi-source in this scenario

in order to minimize its procurement costs in the long run. We then characterize the optimal size

of the supply base that the buyer should maintain over the long run.

Sensitivity analyses of the optimal supply base size with respect to qualifying cost reveals that

the supply base size decreases with an increase in the cost to qualify suppliers. In addition, we

evaluate how the extent of multi-sourcing under the optimal mechanism changes and we find that it

increases with higher supply base size and is non-monotonic in qualification cost. Finally, we discuss

the optimal mechanism and the supply base composition when suppliers are ex ante asymmetric.

This model could easily be extended to capture other aspects of the buyer’s supply base main-

tenance costs, provided that the buyer’s virtual cost function satisfies assumption (c). This could

capture, for example, the buyer’s costs associated with replacing poor-performing suppliers who did

not get a large allocation and become inattentive to the buyer and too difficult to work with. This

could also capture the buyer’s costs of performing routine due diligence on suppliers who remain in

the supply base; since due diligence is partly a replacement for recent familiarity with a supplier,

suppliers with a smaller allocation would be less familiar and would require more re-qualification

by the buyer before the next period.

Finally, it is worth mentioning some future research questions related to the model developed

in this paper. An interesting extension of this work would be to analyze the optimal procurement

policy when suppliers’ have private information signals that are correlated across periods. The
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analysis becomes quite difficult due to the complex dynamic nature of the resulting game. In

fact, the problem falls in a notoriously challenging area in economics for which positive results

have only been obtained in limited cases, e.g., Klotz and Chatterjee (1995a). This is certainly

a challenging area for future work, but we suspect that some of the additional insights would

be rather straightforward: for example, to the extent that individual suppliers’ costs are more

positively correlated across periods, the use of split awards would become less attractive for the

buyer. Another possible extension to this work could include analyzing the optimal procurement

policy when the suppliers’ availability not only depends on their present allocation but also on

their past allocations. In this case, one would expect that a supplier’s willingness to stay in the

supply base would continuously decrease over time unless it receives additional business. This would

greatly complicate the buyer’s optimal control problem by increasing the state space, rendering

it quite analytically challenging. While this embellishment would be interesting and may include

additional operational details, it will not change our paper’s main idea and its main contribution,

namely the use of split awards for supply base maintenance.
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Appendix

Proof of Lemma 1: Let cj,n denote the jth order statistic (of unit cost) among n samples. Then

Ecc2,n =

∫ ∞

c=0

P(c2,n ≥ c)dc=

∫ ∞

c=0

P(c1,n ≥ c)dc+

∫ ∞

c=0

P(c2,n ≥ c≥ c1,n)dc

=

∫ ∞

c=0

(1−F (c))ndc+

∫ ∞

c=0

nF (c)(1−F (c))n−1dc.

Performing integration by parts on the second integral term yields

Ecc2,n =

∫ ∞

c=0

(1−F (c))ndc+

∫ ∞

c=0

d

dc

(
F (c)

f(c)

)
(1−F (c))ndc

=

∫ ∞

c=0

en ln(1−F (c))dc+

∫ ∞

c=0

d

dc

(
F (c)

f(c)

)
en ln(1−F (c))dc.

For
F (c)

f(c)
non-decreasing in c, the above expression is indeed decreasing and convex in n. �

Proof of Theorem 1: For a T -period horizon, denote by na,t (the state variable) the number of

suppliers available at the beginning of period t and denote by nt (the decision variable) the supply

base size after the buyer has qualified the additional nt − na,t suppliers. Also, denote by Jt(na,t)

the cost-to-go at the beginning of period t. Then, the DP algorithm can be written as

Jt(na,t) = min
nt≥na,t

⟨
Ecc(2,nt) + k(nt −na,t)+EAJt+1

(
nt∑
i=1

Ai

)⟩
,

JT (na,T ) = min
nT≥na,T

⟨Ecc(2,nT ) + k(nT −na,T )⟩.

From Shaked and Shanthikumar (1988) we know that EAJt+1

(
n∑

i=1

Ai

)
is convex in n if Jt+1(n)

is convex in n and Ai for i = 1,2 . . . n are independent non-negative random variables (one can

find the argument by following Example 4.3, Proposition 3.7 and Definition 2.6 of their paper).

Also from Lemma 1, we know that Ecc(2,n) is convex in n. Hence a unique n∗
T exists such that the

buyer qualifies max(0, n∗
T −na,T ) suppliers in the last period. Thus, JT (na,T ) is convex in na,T and

therefore by induction it follows that a qualify up-to policy is optimal for each period.

For an infinite horizon we can express the optimal cost-to-go J(na) in any period as J(na) =

lim
T→∞

Jt(na) for any t. Therefore J(na) is convex in na and a unique n∗ exists such that the buyer
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qualifies max(0, n∗−na) suppliers. From the Bellman’s Equation in Equation (2) the optimal qualify

up-to level can then be found as n∗ = argmin
n

⟨
Ecc(2,n) + kβ

∑n

i=1 ᾱ

1−β
+ kn

⟩
. This is equivalent to

n∗ = argmin
n

⟨
Ecc(2,n) + kβnᾱ+ kn(1−β)

⟩
. �

Proof of Lemma 2: Let Ξi(ĉi, ci) represent the utility of supplier i that has a marginal

cost ci but reports ĉi, that is, Ξi(ĉi, ci) = zi(c−i, ĉi) − Si(q(c−i, ĉi), ci). Using conditions (3) we

know that Ui(c−i, ĉi) = zi(c−i, ĉi)− Si(q(c−i, ĉi), ĉi). Hence from condition (1) we get zi(c−i, ĉi) =

Ui(c−i,∞) +

∫ ∞

t=ĉi

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+ Si(q(c−i, ĉi), ĉi). Putting this value back in the expres-

sion of Ξi(ĉi, ci), we get Ξi(ĉi, ci) = Ui(c−i,∞) +

∫ ∞

t=ĉi

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt + Si(q(c−i, ĉi), ĉi) −

Si(q(c−i, ĉi), ci). This can also be written as Ξi(ĉi, ci) = Ui(c−i, ci)−
∫ ĉi

t=ci

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+∫ ĉi

t=ci

∂Si(q(c−i, ĉi), c)

∂c

∣∣∣∣∣
c=t

dt. Finally, from condition (2) and the assumption
∂2S(q, c)

∂q∂c
≥ 0 we

get that

∫ ĉi

t=ci

∂Si(qi(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dw ≥
∫ ĉi

t=ci

∂Si(qi(c−i, ĉi), c)

∂c

∣∣∣∣∣
c=t

dw for all c−i, ĉi, ci and hence

Ξi(ĉi, ci)≤Ui(c−i, ci), which is precisely the (IC) condition. Conditions (1) and (4) imply the (IR)

condition. �

Proof of Lemma 3: Define

S(n) = min
q|

∑n
i=1 qi=1

Ec

{
n∑

i=1

⟨∫ ∞

t=ci

∂Si(q(c−i, t), c)

∂c

∣∣∣∣∣
c=t

dt+Si(qi(c), ci)

⟩
+βEAJ

(
n∑

i=1

Ai(qi(c), ci)

)}
The Bellman’s equation in (9) can then be expressed as J(na) =minn≥na(S(n)+k(n−na)). For any

cn+1 and any q1, . . . , qn and qn+1 = 0 we get J

(
n∑

i=1

Ai(qi, ci)

)
≥ J

(
n+1∑
i=1

Ai(qi, ci)

)
(since α(0, ci)≥

0) and

∫ ∞

t=cn+1

∂Cn+1(0, c)

∂c

∣∣∣∣∣
c=t

dt+Cn+1(0, cn+1) = 0. Hence by optimality of q, we get S(n+1)≤

S(n). Since S(n) is strictly non-negative, it implies that there must exist a finite n∗ such that a

policy of maintaining the supply base size at max(n∗, na) is optimal. In fact, starting the horizon

with 0 suppliers, the buyer would initially qualify n∗ suppliers, such that, n∗ = argminn≥0(S(n)+

kn) and would qualify-upto n∗ in all future periods. �

Proof of Theorem 2: For
∂2B(q, c)

∂q∂c
≥ 0, point (2) of Lemma 2 gets satisfied if q(c−i, ci) is

decreasing in ci, which we show next. For c1i ≥ c0i and any two sample paths of costs (c0i ,c−i) and

(c1i ,c−i), let q
0
1, . . . , q

0
n and q11, . . . , q

1
n denote the respective allocations obtained from the minimiza-

tion program in Equation (14). Then by optimality of these allocations we get∑
j∈n
j ̸=i

B(q0j , cj)+B(q0i , c
0
i )≤

∑
j∈n
j ̸=i

B(q1j , cj)+B(q1i , c
0
i ) (22)
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and similarly ∑
j∈n
j ̸=i

B(q1j , cj)+B(q1i , c
1
i )≤

∑
j∈n
j ̸=i

B(q0j , cj)+B(q0i , c
1
i ) (23)

Adding Equations (22) and (23) gives us B(q0i , c
0
i ) + B(q1i , c

1
i ) ≤ B(q1i , c

0
i ) + B(q0i , c

1
i ). Which

implies that B(q1i , c
1
i )−B(q1i , c

0
i )≤B(q0i , c

1
i )−B(q0i , c

0
i ). For

∂2B(q, c)

∂q∂c
≥ 0 and c1i ≥ c0i , this implies

that q1i ≤ q0i . �

Proof of Theorem 3: Define Ξbuyer(c1, . . . , cn) = min
q

n∑
i=1

B(qi(c), ci). We can then write

Ξbuyer(c1, . . . , cn,∞) = Ξbuyer(c1, . . . , cn) (because B(0,∞) = 0). Therefore

Ξbuyer(c1, . . . , cn, cn+1) =−
∫ ∞

w=cn+1

dΞbuyer(c1, . . . , cn,w)

dw
dw+Ξbuyer(c1, . . . , cn).

Using the envelope theorem, we get
dΞbuyer(c1, . . . , cn,w)

dw
=

∂B(qn+1(c,w), c)

∂c

∣∣∣
c=w

and therefore

Ξbuyer(c1, . . . , cn, cn+1)−Ξbuyer(c1, . . . , cn) =−
∫ ∞

w=cn+1

∂B(qn+1(c,w), c)

∂c

∣∣∣
c=w

.

From Equation (17) we know that Cbuyer(n) =EcnΞ(c1, . . . , cn)+k(1−β)n, where cn denotes an n

dimensional vector of virtual costs. Therefore

Cbuyer(n+1)−Cbuyer(n) =−Ecn+1

∫ ∞

w=cn+1

∂B(qn+1(cn,w), c)

∂c

∣∣∣
c=w

+ k(1−β).

For symmetric suppliers (having the same cost distribution), the above equation can equivalently

be written as Cbuyer(n+ 1)−Cbuyer(n) = −Ecn+1

∫ ∞

w=c1

∂B(q1(w,cn), c)

∂c

∣∣∣
c=w

+ k(1− β). Similarly,

Cbuyer(n+2)−Cbuyer(n+1) =−Ecn+2

∫ ∞

w=c1

∂B(q1(w,cn+1), c)

∂c

∣∣∣
c=w

+ k(1−β).

For
∂2B(q, c)

∂q∂c
≥ 0, we get q1(w,cn) = q1(w,cn,∞) ≥ q1(w,cn, cn+1) for all w,cn, cn+1. Hence

∂B(q1(w,cn), c)

∂c
≥ ∂B(q1(w,cn+1), c)

∂c
for all w,cn, cn+1, c. Therefore Cbuyer(n+2)−Cbuyer(n+1)≥

Cbuyer(n+1)−Cbuyer(n). and hence Cbuyer(n)−Cbuyer(n+1) is decreasing in n. �

Proof of Lemma 4: Differentiating Cbuyer(n) w.r.t. k (and applying the envelope theorem) we

get

dCbuyer(n)

dk
=Ecn

n∑
i=1

ᾱ(qi(cn), ci)+ (1−β)n.

where qi(cn) represents the optimal allocation to supplier i when there are n suppliers in the supply

base. Similarly

dCbuyer(n+1)

dk
=Ecn+1

n+1∑
i=1

ᾱ(q̂i(cn+1), ci)+ (1−β)(n+1).
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where q̂i(cn+1) represents the optimal allocation to supplier i when there are n+1 suppliers in the

supply base. Taking the difference between the above two expressions we get

d(Cbuyer(n)−Cbuyer(n+1))

dk
=Ecn+1

⟨
n∑

i=1

(
ᾱ(qi(cn), ci)− ᾱ(q̂i(cn+1), ci)

)
− ᾱ(q̂n+1(cn+1), cn+1)

⟩
−(1−β).

For any sample path, that is, for any c1, . . . , cn+1 we get, from the proof of Theorem 3, qi ≥ q̂i, for

all i= 1, . . . , n. Since ᾱ(q, c) is decreasing in q therefore
d(Cbuyer(n)−Cbuyer(n+1))

dk
≤ 0. �

Proof of Lemma 5: We order the marginal cost such that c1 ≤ c2 ≤ . . . ≤ cn. Also we

define the maximum allocation χmax as a function of the differences between consecutive order

statistics of marginal costs, ∆c = ∆c1,∆c2, . . . ,∆cn−1 = c2 − c1, c3 − c2, . . . , cn − cn−1, that is

χmax(∆c1,∆c2, . . . ,∆cn−1, ν) = qmax(c1, c2, . . . , cn), where ν is the cost of a supplier (could be any

supplier) such that one can infer c1, . . . , cn from ∆c1,∆c2, . . . ,∆cn−1, ν (note that ν controls for

change in allocation when the costs of each supplier is shifted). Indeed, ν is distributed according

to the cost of the suppliers, i.e., with c.d.f. f and p.d.f. F .

The remainder of the proof is organized as follows. We first show that the probability distribution

function of any ∆ci can be characterized by h(w). We next show that the survival function of any

∆ci is decreasing in the sample size n (i.e. the ith order statistic with sample size n stochastically

dominates in the first order the ith order statistic with sample size n+ 1 ). Finally we use this

result to show that the expectation of χmax is decreasing in n.

The probability density function of the difference between two consecutive order statistics m+1

and m of virtual cost, for sample size n, can be written as (see David and Nagaraja 2003)

hm,n(w) =

∫ ∞

x=0

Fm−1(x)[1−F (x+w)]n−m−1f(x)f(x+w)dx.

Indeed, with n suppliers, we can express q̄max(n) =E∆c,νχmax(∆c1,∆c2, . . . ,∆cn−1, ν) and for n+1

suppliers q̄max(n+1)=E∆c,νχmax(∆c1,∆c2, . . . ,∆cn−1,∆cn, ν).

Since adding an extra supplier will not increase the allocation of the cheapest supplier supplier

(follows directly from the proof of Theorem 3). Thus, for any sample path ∆c1, . . . ,∆cn−1, ν, rep-

resenting E∆ci,n as the expectation taken over the distribution of ∆ci when n suppliers are present,

we can write

χmax(∆c1,∆c2, . . . ,∆cn−1, ν)≥E∆cn,n+1
χmax(∆c1,∆c2, . . . ,∆cn−1,∆cn, ν), (24)

However, the density function of the difference between consecutive order statistics will be different

for n and for n+ 1 suppliers, i.e., hm,n(w) will be different from hm,n+1(w). Let H̄m,n(z) denote
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the survival function of the difference between consecutive order statistics of marginal cost for n

suppliers. Therefore

H̄m,n(z) =

∫ ∞

w=z

hm,n(w)dw=

∫ ∞

x=0

∫ ∞

w=z

Fm−1(x)[1−F (x+w)]n−m−1f(x)f(x+w)dwdx

=

∫ ∞

x=0

Fm−1(x)
[1−F (x+ z)]n−m

n−m
f(x)dx.

Indeed,
[1−F (x+ z)]n−m

n−m
is decreasing in n and therefore H̄m,n(z) ≥ H̄m,n+1(z) for all 1 ≤m ≤

n− 1.

From Shaked and Shanthikumar (1988), we know that for any two random variables X and Y

(with c.d.f. F and G respectively) and a function ϕ(z) that is increasing in z the following is true:

EXϕ(x)≥EY ϕ(y) if F̄ (x)≥ Ḡ(x).

From the feasibility of the mechanism we know that the allocation can only decrease. Therefore

any increase in ∆ci with all the other ∆cj, for j ̸= i, and ν held constant would imply that qk

would not increase for all k≥ i+1 and ql would not decrease for all l≤ i, in order to maintain the

constraint
∑

qi = 1. Hence, χmax(∆c1,∆c2, . . . ,∆cn−1) is non-decreasing in ∆ci, for all 1≤ i≤ n−1

when for all j ̸= i, ∆cj are held constant. Therefore,

E∆ci,nχmax(∆c1,∆c2, . . . ,∆cn−1, ν)≥E∆ci,n+1
χmax(∆c1,∆c2, . . . ,∆cn−1, ν). (25)

Moreover, for any sample path ∆c1, . . . ,∆cn−1 increasing c1 implies shifting all the costs c1, . . . , cn

to the right. Since ν is distributed according to f , hence adding a supplier does not change its

distribution.

Indeed, using Equation (24) alongwith Equation (25), it follows that for any sample path

∆c1, . . . ,∆cn−2

E∆cn−1,n,νχmax(∆c1,∆c2, . . . ,∆cn−1, ν)≥E∆cn−1,n+1,νχmax(∆c1,∆c2, . . . ,∆cn−1, ν)
≥E∆cn−1,n+1,ν

(
E∆cn,n+1

χmax(∆c1,∆c2, . . . ,∆cn−1,∆cn, ν)
)

Because this is true for every sample path ∆c1, . . . ,∆cn−2,

E∆c,νχmax(∆c1,∆c2, . . . ,∆cn−1, ν)≥E∆c,ν

(
E∆cn,n+1

χmax(∆c1,∆c2, . . . ,∆cn−1,∆cn, ν)
)
,

and hence q̄max(n+1)≤ q̄max(n). �

Proof of Lemma 6: Let ϕ(q, c) = S(q, c)+ ∂S(q,c)

∂c
·F (c)/f(c). For any k, let the optimal allocation

be q1, . . . , qn. Optimality of allocation implies that for any qi > qj a transfer of an amount ϵ > 0

from qi to qj would result in a non-optimal solution (a higher cost), i.e.∑n

l=1,l ̸=i,l ̸=j B(ql, cl)+ϕ(qi, ci)+ϕ(qj, cj)+ kβᾱ(qi)+ kβᾱ(qj)≤∑n

l=1,l ̸=i,l ̸=j B(ql, cl)+ϕ(qi − ϵ, ci)+ϕ(qj + ϵ, cj)+ kβᾱ(qi − ϵ)+ kβᾱ(qj + ϵ)
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Which implies that

ϕ(qi, ci)+ϕ(qj, cj)−ϕ(qi − ϵ, ci)−ϕ(qj + ϵ, cj)≤ kβ(ᾱ(qi − ϵ)+ ᾱ(qj + ϵ)− ᾱ(qi)− ᾱ(qj))

However, for ᾱ convex the right hand side of the above inequality is less than 0 and for k→∞ the

above inequality can not be true if qi > qj. In fact, for k →∞, the above inequality holds only if

qi = qj. Applying this argument for all the pairs of allocation results in qi =
1
n
for all i as k→∞. �

Proof of Lemma 7: Similar to the proof of Lemma 3, finite optimal supply base levels

n∗
1(0) . . . n

∗
r(0) exist for each type of suppliers that minimize the cost-to-go at the beginning of the

horizon (when the buyer has an empty supply base). Hence, starting any consequent period with

nj,a ≤ n∗
j (0) for j = 1 . . . r suppliers, a stationary policy of qualifying up-to n∗

j (0) for j = 1 . . . r is

optimal. �


