NOT YOUR AVERAGE JOB: MEASURING FARM LABOR IN TANZANIA

Vellore Arthi
Kathleen Beegle
Joachim De Weerdt
Amparo Palacios-Lopez

University of Namur 26 April 2016

Introduction

- In low-income countries, a large share of people rely on small-holder farming
- Farming practices are labor intensive and primarily dependent on own labor
- Labour is a key asset for the poor
- Its measurement underlies
- Key stylized facts: unemployment \& underemployment, agricultural productivity gap,
- A lot research in development economics: agricultural HH models, intra-household allocation, child labor, agricultural productivity, entry into off-farm, structural transformation, urbanization....

Role of Surveys

- Labour measurement happens primarily through surveys
- Little guidance on best-practice
- Little knowledge on reliability of current data
- Most evidence on reliability of labour data comes from the US (Bound e.a. 2001)
- Unlikely to be relevant for developing world

Components of labour aggregate

- The accuracy of labor measurement depends on the accurate recall of many components, including:
- A complete listing of all plots farmed
- A complete listing of all workers
- Weeks worked
- Days worked
- Hours worked

A typical survey instrument (own Farm Labour)

During the last rainy season (do not include the dry season harvest), please list for me the household members that worked on this PLOT performing any activity (land preparation, planting, ridging, weeding, fertilizing and/or harvesting);
ADD A NEW ROW FOR EACH HOUSEHOLD MEMBER WORKING ON PLOT DURING LONG RAINY SEASON 2014

$\begin{aligned} & \bigcirc-2 \\ & \stackrel{-}{O} \\ & \frac{1}{2} \end{aligned}$		2	3	4
		How many weeks did [NAME] work?	During those weeks, approximately how many days did [NAME] work per week?	During those days, approximately how many hours did [NAME] work per day?
		Weeks	Days per week	Hours per day
1				
2				
3				

Worries

1. Reliable? Cognitively burdensome:

- High level of granularity
- Long recall
- Asked to calculate averages on the spot

2. Comparable? Survey instruments differ:

- Respondent (proxy, self)
- Recall period (yesterday, last season)
- Phrasing, sequencing, screening
- Level of granularity (HH , ind, ind-plot, ind-plot-activity)
- Totals values, typical values or combination
- etc. etc. etc...

SPOILER ALERT

- Survey experiment amongst small-holder farming households in rural Tanzania
- Traditional labour module: single, end-of-season survey asking about labour in past season (6-9 months back)
- Benchmark: labor information collected in weekly surveys
- Traditional labour modules overstate hours worked per person-plot by a factor of four.
- ceteris paribus, that implies understated agricultural labor productivity
- Important finding for debate on agricultural productivity gap (Gollin e.a.) and the sectoral misallocation of labour

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Study Design
4. Local context
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias
8. Conclusion

Social and cognitive psychology

1. Recall period

- Ex. "Did you work on plot X in the past 4 weeks?"
- Forgetting
- Telescoping
- Ex. "How many times have you been angry today?"
vs. Ex. "How many times have you been angry in the past 12 months"
- Recall period influences inferred meaning

Social and cognitive psychology

2. Assumptions about the world

- Undue influence of recent experiences
- Subjective theories - Ross and Conway skills training experiment:
- respondents reconstruct their past guided by their subjective theories about what the training should have done
- Sequencing of questions
'how happy are you with life in general?'
'how often do you go out on a date?'
- Ex. in low-income survey context: do reports on yields influence reports on labor inputs?

Social and cognitive psychology

3. Respondent - survey interactions:

- Social desirability bias

Ex. 25\% of non-voters report having voted immediately after an election

- Strategic answers

Ex. Asking about poverty in survey linked to a CCT Ex. Asking about attitudes after attitudes training

Social and cognitive psychology

4. Respondent strategies

Ex. "how many visits to Africa since January?"
Ex. "how many cups of coffee have you had since January?"

Recall and count for salient and infrequent events.
Rate based estimations for regular events
(possibly with corrections)

Schematically

Rate-based

FORMAL LABOUR

FARM LABOR

Recall \& Count

Other info?

SALIENCE

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Study design
4. Local context
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias
8. Conclusion

Design of Study

- 18 communities in rural Mara region, Tanzania
- During and after main agricultural season
- January -September 2014
- Implemented by EDI in Tanzania
- Using CAPI \& CATI on surveybe

Survey Experiment "business as usual"

Survey Experiment "business as usual"

Design	Interview-Type	Number of Households

Recall-NPS	Single end-of-season survey asking typical hours per day on each activity	218
Recall-ALT	Single end-of-season survey asking about total weeks worked, typical days per week and typical hours per day	212

Survey Experiment "benchmark"

Design	Interview-Type	Number of Households
Weekly-Visit	weekly in-person visits for the duration of the main season (~ 25 visits)	212

Recall-NPS	Single end-of-season survey asking typical hours per day on each activity	218
Recall-ALT	Single end-of-season survey asking about total weeks worked, typical days per week and typical hours per day	212

Survey Experiment "alternative?"

Design	Interview-Type	Number of Households
Weekly-Visit	weekly in-person visits for the duration of the main season (~25 visits)	212
Weekly-Phone	weekly phone interviews for the duration of the main season (~25 calls)	212
Recall-NPS	Single end-of-season survey asking typical hours per day on each activity	218
Recall-ALT	Single end-of-season survey asking about total weeks worked, typical days per week and typical hours per day	212

Benchmark

Errors in recall data are assessed by comparing them to weekly visit, which we believe to be close to the truth, because:

- Day-by-day, plot-by-plot, person-by-person:
- Based on a recall-and-count of labour instances
- Not based on inference or rate-based calculations
- Short visits every week
- Reduced recall period to minimize forgetting
- Anchoring with previous visit to minimize telescoping

Identification

- Balanced on observables
- No differential attrition
- No differential self-reporting
- Hawthorne effects (+)? Respondent fatigue (-)?
- No trend of increasing or decreasing labour inputs
- Little difference face-to-face vs. phone
- Impact of giving mobile phone?
- 72\% HHs already owned a phone
- Intra-cluster randomisation: contamination?
- Cluster level randomisation could not work with 18 villages
- Agro-ecological factors controlled for
- Villages large and diffuse

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Study design
4. Local context
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias
8. Conclusion

Local context: MARA

- Mara region of Tanzania
- 6.4 HH members
- HH cultivates 4.6 plots, 1 acre each
- Plots are 30 minutes away (1 hour commute)
- Main farming season Jan-July
- Primary crops: cassava and maize
- Secondary crops: beans, sweet potato, sorghum

Activities recorded in 25 weekly visits (>10yrs)

\(\left.$$
\begin{array}{lllc}\hline & \begin{array}{l}\text { \% individuals } \\
\text { engaged in the } \\
\text { activity at least 1 } \\
\text { day }\end{array} & \begin{array}{l}\text { average days worked } \\
\text { per week, conditional } \\
\text { on being active in the } \\
\text { activity* }\end{array} & \begin{array}{c}\text { Hours per day in } \\
\text { activity, } \\
\text { conditional }\end{array}
$$

working that day\end{array}\right]\)| Own farm labour | 87% | 1.90 |
| :--- | :--- | :--- |
| Paid ag labor | 16% | 0.34 |
| Free ag labor | 21% | 0.28 |
| Fishing | 10% | 1.23 |
| Livestock work | 27% | 1.10 |
| Employment off-farm | 11% | 1.00 |
| Business activity | 31% | 1.43 |
| Collecting firewood | 56% | 0.49 |
| Collecting water | 72% | 2.75 |
| Schooling | 27% | 2.76 |
| Sick | 48% | |

[^0]
A day on the field

Any day with some own farm agricultural labor

Accounting for 5.8 hours of activties

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Study design
4. Local context
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias
8. Conclusion

Person-plot level results

		REPORTED		CALCULATED
	Total weeks	Total days	Avg. days per working week	Avg. hours per working day
Revisit		Total hours per person-plot		
Phone				
Recall NPS				
Recall ALT				

- Eligible persons are those >10 yrs, reporting any agricultural labour Jan-June (excluding paid agricultural work for others).
- Eligible plots are those on which any eligible individuals worked Jan-June
- Averages are calculated over all eligible person-plot combinations. If an eligible person did not work on eligible plot, then this is counted as a 0 in the average.

Person-plot level results

		REPORTED			CALCULATED
	Total weeks	Total days	Avg. days per working week	Avg. hours per working day	Total hours per person-plot
Revisit	2.52	9.22	3.66	4.14	39.54
Phone					
Recall NPS					
Recall ALT					

- Eligible persons are those >10 yrs, reporting any agricultural labour Jan-June (excluding paid agricultural work for others).
- Eligible plots are those on which any eligible individuals worked Jan-June
- Averages are calculated over all eligible person-plot combinations. If an eligible person did not work on eligible plot, then this is counted as a 0 in the average.

Person-plot level results

	REPORTED				CALCULATED
	Total weeks	Total days	Avg. days per working week	Avg. hours per working day	Total hours per person-plot
Revisit	2.52	9.22	3.66	4.14	39.54
Phone					
Recall NPS					
Recall ALT	5.74	-	5.19	4.61	146.31

- Eligible persons are those >10 yrs, reporting any agricultural labour Jan-June (excluding paid agricultural work for others).
- Eligible plots are those on which any eligible individuals worked Jan-June
- Averages are calculated over all eligible person-plot combinations. If an eligible person did not work on eligible plot, then this is counted as a 0 in the average.

Person-plot level results

	REPORTED				CALCULATED
	Total weeks	Total days	Avg. days per working week	Avg. hours per working day	Total hours per person-plot
Revisit	2.52	9.22	3.66	4.14	39.54
Phone					
Recall NPS	-	25.72	-	4.60	121.30
Recall ALT	5.74	-	5.19	4.61	146.31

- Eligible persons are those >10 yrs, reporting any agricultural labour Jan-June (excluding paid agricultural work for others).
- Eligible plots are those on which any eligible individuals worked Jan-June
- Averages are calculated over all eligible person-plot combinations. If an eligible person did not work on eligible plot, then this is counted as a 0 in the average.

Person-plot level results

	REPORTED				CALCULATED
	Total weeks	Total days	Avg. days per working week	Avg. hours per working day	Total hours per person-plot
Revisit	2.52	9.22	3.66	4.14	39.54
Phone	2.57	10.68	3.68	4.38	48.81
Recall NPS	-	25.72	-	4.60	121.30
Recall ALT	5.74	-	5.19	4.61	146.31

- Eligible persons are those >10 yrs, reporting any agricultural labour Jan-June (excluding paid agricultural work for others).
- Eligible plots are those on which any eligible individuals worked Jan-June
- Averages are calculated over all eligible person-plot combinations. If an eligible person did not work on eligible plot, then this is counted as a 0 in the average.

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Study design
4. Local context
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias (skip)
8. Conclusion

Mechanisms

- Large upward bias in days worked (roughly tripling the true value)
- Irregularity of days worked: some agricultural work in 11.04 weeks (out of 26) and on 46.39 days (out of 182)
- Relatively modest upward bias in hours worked (adding 11\% to 14% to the true value)
- Regularity in hours worked conditional on working

Modal number of days/week

| $\begin{array}{l}\text { Modal } \\ \text { days } \\ \text { worked }\end{array}$ | Frequency | $(\%)$ | | Distribution of actual days worked, for a given mode | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (row \%) | | | | | | |$)$

Modal number of days/week

$\begin{array}{l}\text { Modal } \\ \text { days } \\ \text { worked }\end{array}$	$\begin{array}{l}\text { Frequency } \\ (\%)\end{array}$	Distribution of actual days worked, for a given mode						
(row \%)								

modal hours/day

Modal days worked	Frequency (\%)	Distribution of actual days worked, for a given mode (row \%)				
		2	3	4	5	6
2	5.4					
3	12.5					
4	48.3					
5	15.2					
6	18.6					

modal hours/day

Modal days worked	Frequency (\%)	Distribution of actual days worked, for a given mode				
		2	3	4	5	6
2	5.4	48.9	13.4	21.2	6.6	10.0
3	12.5	11.0	53.4	20.5	9.0	6.1
4	48.3	4.5	14.8	57.0	13.6	10.2
5	15.2	3.2	10.8	25.9	46.5	13.6
6	18.6	3.5	8.9	18.3	16.0	53.3

Mechanisms

- Assuming respondents do not use recall and count strategies, how might they average?
- Based on recent experiences, such as the last week, or the harvest period?
- Based on peak labour periods (salience)?
- Not taking account of weeks not worked? Assuming they worked every week?
- Granularity? E.g. erroneously report total person hours at the person-plot level (x 4.6 estimate)
- Exercise: take slice of weekly data and scale (necessary, but not sufficient condition)

Scaling exercises (person level)

Weekly Weekly Recall Recall

Report from survey (no scaling) $201 \quad 228 \quad 314 \quad 390$
Scaled up hours in busiest week 940
Scale up hours in most recent week 393
Scaled up hours in average harvest week 432
Scaled up hours in average working week 411

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Study design
4. Local context
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias
8. Conclusion

Aggregating over plots and hours

Weekly Visit Weekly Phone
 Recall NPS
 Recall ALT

A. Per person-plot				
Hours	39.54	$48.81^{* * *}$	$121.30^{* * *}$	$146.31^{* * *}$
Days	9.22	$10.68^{* * *}$	$25.72^{* * *}$	$29.80^{* * *}$
B. Per person (sum over plots)				
Hours	201.02	$228.25^{* * *}$	$313.51^{* * *}$	$389.46^{* * *}$
Days	46.39	49.57^{*}	$66.49^{* * *}$	$79.32^{* * *}$
C. Per plot (sum over persons)				
Days	183.02	$223.09^{* * *}$	$363.89^{* * *}$	$452.42^{* * *}$
Hours	42.23	$48.45^{* * *}$	$77.17 * * *$	$92.14^{* * *}$
D. Per household (sum over person-plots)				
Hours	848.64	$977.59 *$	865.10	$1104.06 * *$
Days	195.83	212.31	183.47	224.85

Cumulative no. of plots

Cumulative Plots per Household by Week

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
Mean plot size (ha)	0.39	0.41	0.36	0.36
	(0.38)	(0.41)	(0.32)	(0.35)
Proportion owned	0.68	0.69	$0.83^{* * *}$	$0.82^{* * *}$
Mean distance from residence (minutes)	31.57	33.73	31.22	29.53
Distance (proportions):				
$(\mathbf{0 , 3 0]}$ minutes	0.66	$0.60^{* * * *}$	$0.74^{* * *}$	$0.75^{* * *}$
$\mathbf{(3 0 , 6 0]}$ minutes	0.23	$0.27^{* *}$	$0.15^{* * *}$	$0.16^{* * *}$
$\mathbf{(6 0 , 9 0]}$ minutes	0.06	0.07	$0.03^{* *}$	$0.03^{* *}$
$\mathbf{(9 0 , 1 2 0]}$ minutes	0.02	0.03^{*}	$0.06^{* * *}$	$0.04^{* *}$
$\mathbf{(1 2 0 , 2 4 0]}$ minutes	0.03	0.03	0.03	0.02

Workers per HH per week

Cumulative Workers per Household by Week

Arthi, Beegle, De Weerdt, Palacios-Lopez
Measuring Farm Labor

Person characteristics

	Weekly Visit	Weekly Phone	Recall NPS	Recall ALT
Proportion adults (ages 20 and up)	0.60	$0.65^{* *}$	$0.74^{* * *}$	$0.73^{* * *}$
Proportion children (ages 10-19)	0.40	$0.35^{* *}$	$0.26^{* * *}$	$0.27^{* * *}$
Proportion men	0.47	0.49	0.49	$0.52^{* *}$
Proportion women	0.53	0.51	0.51	$0.48^{* *}$
Proportion stated occupation farmer	0.78	0.78	0.82	$0.83^{* *}$
Proportion working <10 days (pp)	0.56	$0.50^{* * *}$	$0.13^{* * *}$	$0.22^{* * *}$
Proportion working <20 days (pp)	0.78	0.76^{*}	$0.38^{* * *}$	$0.44^{* * *}$
Proportion working <30 days (pp)	0.87	0.87	$0.61^{* * *}$	$0.57^{* * *}$
Proportion working <10 days (p)	0.19	0.16	$0.06^{* * *}$	$0.09^{* * *}$
Proportion working <20 days (p)	0.35	$0.30^{* *}$	$0.16^{* * *}$	$0.22^{* * *}$
Proportion working <30 days (p)	0.46	$0.41^{* *}$	$0.29^{* * *}$	$0.32^{* * *}$

$(p)=$ per person; $(p p)=$ per person-plot

Can three wrongs make a right?

Weekly Visit Weekly Phone
 Recall NPS
 Recall ALT

A. Per person-plot				
Hours	39.54	$48.81^{* * *}$	$121.30^{* * *}$	$146.31^{* * *}$
Days	9.22	$10.68^{* * *}$	$25.72^{* * *}$	$29.80^{* * *}$
B. Per person (sum over plots)				
Hours	201.02	$228.25^{* * *}$	$313.51^{* * *}$	$389.46^{* * *}$
Days	46.39	49.57^{*}	$66.49^{* * *}$	$79.32^{* * *}$
C. Per plot (sum over persons)				
Days	183.02	$223.09^{* * *}$	$363.89^{* * *}$	$452.42^{* * *}$
Hours	42.23	$48.45^{* * *}$	$77.17 * * *$	$92.14^{* * *}$
D. Per household (sum over person-plots)				
Hours	848.64	$977.59 *$	865.10	$1104.06 * *$
Days	195.83	212.31	183.47	224.85

OUTLINE

1. Introduction
2. Insights from social and cognitive psychology
3. Local context
4. Study design
5. Results
6. Mechanisms
7. Aggregation and competing forms of bias
8. Conclusion

CONCLUSIONS 1

- labor recall modules exaggerate estimates of the total days and hours worked by individuals on plots.
- Likely due to the irregularity of such work
- recall can even distort information on the number of plots and the number of people who work on the farm
- Various forms of bias compete with each other
- Phone surveys perform well technically, but are they cost-effective?

High frequency phone surveys: cost

Table 11: Per household interviewing costs as a percentage of the baseline survey cost

Weekly Visit | Weekly |
| :---: |
| Phone |

Cost per Household US\$
1 visit 14%
6\%

	10 visits	139%	54%
Cost increase relative to the	20 visits	277%	108%
cost of an LSMS-type survey	25 visits	346%	135%
	30 visits	416%	162%

Exaggerated hours per ha

CONCLUSIONS 2

- Misallocation of labour across sectors (Gollin e.a. 2015)
- If we exaggerate labour inputs then, ceteris paribus, we underestimate productivity of people...
- Raises question for future research: why do people not work more?
- Demand for leisure?
- Market imperfections?
- Is our concept of farm labour too narrow?

Thank you!

Sources of Discrepancy

- Which plots are being forgotten?
- Exclusion of late-added and early-dropped plots does not appear to account for the gap in hours, nor the gap in total household plots
- Plot characteristics do not predict likelihood of exclusion from recall reports
- Distribution of plots reported by plot characteristics (e.g. proximity to home, ownership status, crops) similar across recall and weekly plots
- Who is being forgotten?
- Exclusion of household members who do not report work, household members who report infrequent or highly variable work, and household members who are non-farmers does not appear to account for the gap in hours, nor the gap in total household workers

[^0]: * Not conditional on working that week

