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1 Introduction

This paper analyzes the role of standard economic shocks for the explanation of Californian

house prices in a data-rich dynamic factor model. Specifically, we analyze to which extent

standard aggregate shocks like monetary policy, aggregate demand, and aggregate supply

as well as regional shocks like housing supply and demand, are able to account for the

variation of Californian metro-level house prices. Any remaining unexplained variation is

idiosyncratic so that we can decompose the sources of variation of Californian metro-level

house prices into fundamental economic shocks and idiosyncratic shocks.

Decomposing the variation in Californian house prices into structural economic shocks

and idiosyncratic shocks is interesting for a number of reasons. Compared to other states

California is particularly challenging because house prices have been among the fastest

growing during the last two decades with a big increase during the boom and a big

decrease during the bust and identifying the main economic drivers is therefore interesting.

Even within the state of California the metropolitan house price movements are quite

different; see Figure 2 and 3. We attempt to identify potential economic drivers using a

structural decomposition of the price variation which enables us to answer questions like:

Are the Californian house prices mainly driven by local idiosyncratic shocks or are they

mainly a result of the macroeconomic development? How much of the movements in the

Californian house price can be attributed to regional housing demand and supply shocks?

How sensitive are Californian house prices to US aggregate demand shocks and monetary

policy shocks? Are there any differences among the metropolitan areas?

Our approach to the rather complex task of explaining Californian house prices builds
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on a large-dimensional dynamic factor model with almost 200 economic and financial

time series that broadly cover the US aggregate economy and 75 Californian time series

including metro-level house prices. As such, the Californian metropolitan house prices are

potentially allowed to be a function of a lot of information; at the aggregate level as well at

the state-level. The way this is made econometrically feasible, builds on the fact that many

economic and financial time series comove, so that the panel of observed variables obey an

approximate low-dimensional factor structure. So, essentially we model all the included

aggregate and regional observed variables including house prices as a linear function of a

few dynamic latent factors. Accordingly, a handful or more of dynamic factors drives the

observed variables over time and any innovation in one of the factors can be traced back

to the observed variables, for instance house prices in the San Diego metropolitan area,

through the factor sensitivity (factor loading). Our approach to the identification of the

structural shocks is through an economic identification of the factors so that the factors can

be given an economic interpretation, for instance an inflation factor, an employment factor

or a regional building permits factor.1 This is done by identifying loading restrictions.

Moreover, we also want to distinguish aggregate factors from regional factors and here

loading restrictions accomplish this as detailed later. Finally, the structural identification

of these economic interpretable factors follows recent standard practice in the structural

VAR (SVAR) literature using a combination of zero restrictions and sign restrictions.

Now, in order to discuss structural shocks in a meaningful way we need to identify the

factors so that they can be given an economic interpretation, for instance an inflation

factor, an employment factor or a regional building permits factor. This is done by

1An alternative approach is through sign restrictions on the observed variables.
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identifying loading restrictions. Moreover, we also want to distinguish aggregate factors

from regional factors and also here loading restrictions accomplish this as detailed later.

Finally, the structural identification of these economic interpretable factors follows recent

standard practice in the SVAR literature using a combination of zero restrictions and sign

restrictions.

1.1 Related literature

[consider to start with: What distinguishes this paper ...] Our paper is related to a number

of papers that deals with the structural analysis of house prices; either of national house

prices or regional house prices using either low-dimensional VARs or high-dimensional

dynamic factor models. In a first step, Del Negro & Otrok (2007) estimate a common

national house price factor together with a state-specific house price factor for each of

the 48 contiguous states using a panel of state-level house prices that ends in 2005. In

a second step, the national house price factor is added to a standard low-dimensional

VAR with national economic variables and the response to a monetary policy shock can

then be traced back to a particular state-specific house price via its loading on the na-

tional house price factor. They find that historical movements in house prices are mainly

driven by local factors, although the national factor seems to play a bigger role during

the 2001-2005 period. Furthermore, monetary policy shocks seem to play a small but

nonnegligible role during the boom in house prices. Although we focus on the response

of 25 Californian metro-level house prices, our set-up not only allows for the transmission

of monetary policy shocks through multiple channels to the individual house prices but

also for the transmission of other structural regional shocks as the house prices loads on
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both aggregate and regional factors. Jarocinski & Smets (2008) estimates the effect on

aggregate US house prices of multiple structural shocks (housing demand shock, mon-

etary policy shock and a term spread shock) using a nine-dimensional Bayesian VAR.

Using a combination of zero and sign restrictions, they find that housing demand shocks

and monetary policy explains a sizeable fraction of the house price boom. Our structural

identification approach is quite similar to Jarocinski & Smets (2008) but because we also

have measures of Californian housing construction activity (building permits) we can also

identify a housing supply shock; in fact a regional housing supply shock. Moreover, we

take into account an important shortcoming of the previous literature about the inference

from the impulse responses analysis, when this is based on a combination of zero and

sign restrictions; cf. Arias et al. (2014). Musso et al. (2011) use a standard VAR to

analyse similarities and differences of the responses of euro area and US aggreate house

prices to monetary policy shocks, housing demand shocks and also a credit shock using

recursive identification. In sum, we note that the innovative feature of our paper is the

way that multiple aggegate shocks as well as regional shocks in a data-rich setting can be

traced back to the metro-level Californian house prices, and thus shed light on the role of

structural shocks in explaining regional house prices.

The remaining part of the paper is organized as follows. In section 2 we specify a single

dynamic factor model for all the US aggregate variables, Californian variables and met-

ropolitan house prices. The economic identification of these dynamic factors as well as

the identification of the structural shocks are then detailed. At the end of the section

we briefly detail how the model is estimated using the EM algorithm. In section 3 the

data are described and in section 4 we present the empirical results including the vari-
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ance decomposition of key variables and Californian metropolitan house prices. Section 5

concludes.

2 A dynamic factor model for Californian house prices

In recent years, factor models have become a standard tool in applied macroeconomics

and finance. Essentially, when the number of random sources of variation is less than

the number of dependent variables, then a factor model enables the researcher to reduce

the dimension of the number of explanatory variables to few latent factors. Since the

first generation of (exact) factor models by Geweke (1977) and Sargent & Sims (1977), a

considerable amount of research has been devoted to the econometric theory and empirical

analysis of large dimensional approximate dynamic factor models.2 Starting with the

seminal paper of Chamberlain & Rothschild (1983), the large dimensional approximate

dynamic factor model is introduced by notably Forni et al. (2000, 2004, 2005) (FHLR) in

the frequency domain and Stock &Watson (2002a,b) (SW) in the time-domain. FHLR and

SW estimate the large dimensional dynamic factor model non-parametrically by dynamic

and static principal component methods, respectively, but recently these models have also

been estimated by Bayesian methods (Otrok & Whiteman (1998), Kim & Nelson (1999))

as well as maximum likelihood methods (Doz et al. (2011b,a), Jungbacker & Koopman

(2008)). Although the literature on applications of dynamic factor models is large, the

literature on structural dynamic factor models is smaller with Bernanke et al. (2005) and

2By ’large’we mean large in the cross-section, i.e. large in the number of time series (N) and large
in the number of observations (T ) of the time series. By ’approximate’we refer to the relaxation of the
iid error term assumption in the exact factor model such that the error terms are allowed to be weakly
(locally) correlated; cf. Chamberlain & Rothschild (1983).
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Forni & Gambetti (2010) as leading examples of monetary policy analysis.

In the following, we first present the dynamic factor model briefly, then we discuss iden-

tification and finally estimation.

2.1 Dynamic factor model (DFM)

The key implication of the dynamic factor model is that the variation of each of the N

observed variables in the panel X can be decomposed into two orthogonal components; a

component χ that is common to all variables and an idiosyncratic component ξ specifically

related to the individual observed variable. Consequently, the ith variable in the panel X

at time t can be written as:

Xit = χit + ξit (1)

for i = 1, .., N and t = 1, .., T with E
[
χitξjs

]
= 0 ∀ i, j, t, s but with a potentially limited

amount of correlation among the idiosyncratic components. Consider as in Forni et al.

(2005), the specification of the N × 1 vector of the common component at time t to be

dynamically explained by a small number q << N of common dynamic factors ft such

that χt = λ> (L) ft, where λ (L) is a q × N matrix polynomial in the lag-operator L of

finite order s and where the law of motion of the dynamic factors are commonly given by

a standard reduced form V AR (p) process. The dynamic factor model can now be written

as:

Xt = λ0ft + ...+ λsft−s + ξt

ft = φ1ft−1 + ...+ φhft−p + ut

(2)
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and assuming a limited response heterogeneity compared to the order of the VAR (s < p)

allows us to write the dynamic factor model in (2) in a first-order state space representa-

tion:3

Xt = ΛFt + ξt

Ft = ΦFt−1 + Ut

(3)

where Xt is N × 1, Λ = [λ0, ..., λp] is a N × qp loading matrix, Ft =
[
f>t , ..., f

>
t−p+1

]>
is

a qp vector of dynamic factors and their lags, ξt is a N × 1 vector with the idiosyncratic

error terms, Φ is qp × qp matrix with autoregressive parameters, and the reduced form

VAR residuals reside in Ut =
[
u>t , 0

>
q(p−1)×1

]>
. To fix ideas, we assume that ξt ∼ N (0, R)

with R being a diagonal matrix corresponding to an exact factor model, but we will later

relax this assumption. Throughout the paper we assume ut ∼ N (0,W ) . All processes in

(2) and (3) are assumed stationary.

Notice, that at this stage that our objective is to consider how the observed variables inXt

respond to a structural shock to one of the factors. However, the state space model in (3) is

not yet econometrically identified; the purely latent factors lack economic interpretation;

and we need to identify the structural shocks from the reduced form shocks Ut. Therefore,

we now proceed with the identification of the model, then the economic identification of

the factors and, finally, the identification of the structural shocks.

2.2 Econometric identification of the DFM

The state space model in (3) is not econometrically identified as it is possible to form

observationally equivalent models by arbitrary rotations of the latent factors and the

3See Bai & Ng (2007) or Bai & Wang (2012) for more details.
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loadings. In the non-parametric principal components approach the factors are usually

restricted to be orthogonal in order to achieve identification. Under parametric estimation

approaches different identifications schemes have been used, for instance the hierarchical

loading matrix in Geweke & Zhou (1996) and Aguilar & West (2000) corresponding to

Proposition 1 in Geweke & Singleton (1981), while a simple loading structure of a small

subset of the loading matrix has been used in Bork (2008) corresponding to Proposition 2

in Geweke & Singleton (1981).4 We prefer the latter identification scheme as this allows

for correlated factors and thus resembles more closely the type of correlation that we would

expect among observed economic variables. Furthermore, the variance-covariance matrix

of the VAR innovations is left fully unrestricted, which is preferable in the structural

analysis. To be precise, we ensure exact identification by restricting a small subset of the

large dimensional loading matrix to be an identity matrix of size q × q; without loss of

generality the upper q × q block of λ0 could be restricted to Iq.

2.3 Economic identification by overidentifying restrictions

The estimated factors from the exact identified model are, however, purely latent factors

without a clear economic interpretation. We now impose over-identifying loading restric-

tions to enhance the economic interpretation of these factors but also to separate aggregate

factors from regional (Californian) factors.

To fix ideas, we present a small stylistic dynamic factor model with q factors which

are composed of qZ aggregate factors
(
fZt
)
, qH Californian house price factors

(
fHt
)
,

4Recently, Bai & Wang (2012) and Bai & Wang (2014) has formulated propositions similar to these
propositions targeted especially for dynamic factor models.
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qC Californian economic factors
(
fCt
)
and, finally, a perfectly measured monetary policy

factor it.5 Hence, q = qZ+qH+qC+1. The panelXt consists of n observed time series which

are composed of nZ are US aggregate time series (Zt), nH Californian metro-level house

price series (Ht), nC Californian economic time series (Ct) , and finally also the federal

funds rate it. Therefore, n = nZ+nH+nC+1. These observed variables are assumed to load

only on contemporaneous factors, hence s = 0. In the corresponding state space model

below two points should be noted. Firstly, assume that the exactly identifying restrictions

have already been imposed on the upper qZ× qZ block of the nZ× qZ loading matrix λZZ .

The same identification principle applies to λCC and λHH . Secondly, note also the over-

identifying exclusion restrictions imposed on fCt and fHt which facilitate the economic

identification of separate Californian factors. In particular, US aggregate variables in Zt

are assumed to be contemporaneously unrelated to Californian economic factors, fCt and

Californian housing factors fHt . In contrast the observed Californian economic variables

in Ct and house prices in Ht are allowed to load on the overall aggregate variables. This

means that we condition the estimate of e.g. the Californian house price factors fHt on a

lot of information and that metro-level house prices are allowed to load on both aggregate

and regional information. Finally, note that the dynamic interactions among the factors

are fully unrestricted in the VAR with the implication that e.g. Zt could depend on fCt−1

5Note, that it is not really a factor but a perfectly mesured variable that enters the factor dynamics;
hence the notion of factor-augmented VAR of Bernanke et al. (2005)
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through fZt .



Zt

Ct

Ht

it


=



λZZ 0 0 λZi

λCZ λCC λCH λCi

λHZ λHC λHH λHi

0 0 0 1





fZt

fCt

fHt

it


+



ξZt

ξCt

ξHt

0


(4)



fZt

fCt

fHt

it


= Φ (L)



fZt−1

fCt−1

fHt−1

it−1


+



uZt

uCt

uHt

uit


(5)

The identified aggregate factors and Californian factors are, however, still latent without

a clear economic interpretation. We now add one additional layer of identifying exclu-

sion restrictions to achieve a clear economic interpretation.6 Specifically, we identify an

aggregate inflation factor
(
fZπ,t
)
that loads exclusively on observed inflation series in Zπ,t

among the Zt series, and we identify another aggregate economic activity factor
(
fZy,t
)
that

loads exclusively on aggregate economic activity related series Zy,t among the Zt series.

Accordingly, λZZ is block diagonal with λπ,ZZ and λy,ZZ along the diagonal, while the

exclusion restrictions are seen in the off-diagonal blocks of λZZ . Although the loadings

λCZ and λHZ are left free, we find in our empirical application, that the already imposed

exclusion restrictions are suffi cient to pin down the economic interpretation; otherwise

more restrictions could be imposed. Similarly, we identify a regional (Californian) eco-

nomic activity factor
(
fCy,t
)
, a specific Californian factor for building permits

(
fCb,t
)
and a

6To conserve space, the fully specified state space system is presented in the appendix.
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housing factor
(
fHh,t
)
. Thus, in this stylistic dynamic factor model we end up with q = 6

factors in ft = vec
(
fZπ,t, f

Z
y,t, f

C
y,t, f

C
b,t, f

H
h,t, it

)
that all have an economic interpretation and

we can now proceed with a structural interpretation of shocks to these factors.

2.4 Structural identification by zero and sign restrictions

Based on the state space system in (4)− (5) and the identified factors ft we now identify

five structural shocks; a positive aggregate demand shock
(
εADt

)
, a positive supply shock(

εASt
)
, a positive regional (Californian) housing supply shock

(
εHSt

)
, a positive regional

(Californian) housing demand shock
(
εHDt

)
and a contractionary monetary policy shock(

εMP
t

)
. As detailed below, these shocks are essentially given by a mapping from the struc-

tural shocks (ε) to the reduced form shocks (u) . Hence, once these shocks are identified

we can analyze how much of the variation in e.g. the house prices, Ht, that is due to

aggregate demand shocks or due to Californian housing demand shocks; or alternatively,

how much of the variation in Californian economic variables in Ct that is due to the

identified Californian housing supply shock.

We rely on a combination of zero and sign restrictions to identify these structural shocks

which has some advantages compared to the popular use of the recursive identification

by the Cholesky decomposition and the pure sign restrictions approach. In particular, we

do not have to assume that some variables respond with a lag to others, for instance that

house prices respond with a delay to interest changes via monetary policy shocks. This

implies, that we can remain agnostic about this particular impulse response. Instead, we

identify the shocks as the set of randomly drawn candidate shocks that satisfies theoret-
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ically motivated sign restrictions on some of the impulse responses but remain agnostic

about other impulse responses; see Faust (1998), Canova & Nicolo (2002), Uhlig (2005)

and Fry & Pagan (2011) for important contributions to the literature. However, we also

use zero restrictions to distinguish between aggregate shocks and regional (Californian)

shocks, as this approach is more straightforward than the alternative sign restriction

approach, where one would typically require that a particular aggregate variable grows

relatively more/less than the regional variable. The details of the sign restrictions and

zero restrictions are now discussed and then, finally, we provide a few technical details on

the sign restriction methodology.

2.4.1 Identification of structural shocks by zero and sign restrictions

A positive aggregate supply shock (AS) is defined as shock that leads to a decrease in

inflation, an increase in aggregate output, and an accommodating contractionary mon-

etary policy, while the remaining factors are left unrestricted including the Californian

variables; see Table 1 below. A similar definition is seen in Peersman (2005), Iacoviello

(2005), Furlanetto et al. (2014). A positive aggregate demand shock (AD) moves inflation,

output and the interest rate in the same direction which can be distinguished from an

expansionary monetary policy shock (MP) that would have the opposite sign on the in-

terest rate; see Peersman (2005), Peersman & Straub (2009), and Furlanetto et al. (2014).

A Californian housing supply shock (HS) moves the house prices and the supply of hous-

ing units approximated by Californian building permits in opposite directions, while the

Californian housing demand shock (HD) moves prices and building permits in the same

direction; cf. Jarocinski & Smets (2008) and Abdallah & Lastrapes (2013) for a similar
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definition. To further distinguish these regional shocks from aggregate shocks, we assume

that the aggregate variables are initially unaffected by these housing shocks. A summary

of the shocks are given in Table 1, where (−) or (+) indicates the required sign, (∗) means

unrestricted and (0) indicates a zero restriction. Furthermore, one may define the sign

restriction to hold in each of Ji periods or cumulatively over the Ji periods, while the zero

restrictions may only be required to hold for one period.

Shock: AS AD HS HD MP
Factor response at horizon j = 1...J
Aggregate inflation fZπ,j − + 0 0 −
Aggregate output fZy,j + + 0 0 −
Regional (Californian) output fCy,j ∗ ∗ ∗ ∗ ∗
Regional (Californian) building permits fCb,j ∗ ∗ + + ∗
Regional (Californian) house prices fCh,j ∗ ∗ − + ∗
Federal funds rate it − + 0 0 +

Table 1: Sign restrictions on a small dynamic factor model

2.4.2 Generating shocks that satisfy the zero and sign restrictions

A useful starting point is to consider the popular recursive identification of a structural

VAR which is computational convenient because of the simple mapping of the structural

shocks, εt, to the reduced form shocks ut via a Cholesky decomposition of the covariance

matrix Ω̂ of the estimated residuals given by Ω̂ = A0A
>
0 . It can then be shown that the

uncorrelated structural shocks with unit variance is given by ε̂t = A−1
0 ût; see Christiano

et al. (1999) and recently Fry & Pagan (2011). Consider a linear combination of this base

set of uncorrelated shocks7, εt, given by a orthogonal rotation matrix Q, resulting in a

7It is not important that the these shocks are the results of a Cholesky decomposition; it is merely
convenienent.
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new set of uncorrelated structural shocks ε∗t

ε∗t = Qεt

= QA−1
0 ût

= Q∗ût (6)

where Q∗ = QA−1
0 and where the orthogonality implies that Cov (ε∗t ) = Iq = Cov (εt).

Moreover, the variance of the variables in the reduced form VAR is reproduced using

ε∗t , but the impact on ût and hence the variables in the VAR will be different under

the rotation Q; cf. Fry & Pagan (2011). Hence, one can think of sign restrictions as

an algorithm that generates orthogonal rotation matrices Q and where only candidate

shocks ε∗t are kept if they satisfy all the restrictions on the impulse responses. At this

point, we emphasize that one can trace the response of each of the N observed variables

in the panel Xt to the candidate shock ε∗t through the moving average representation of

the dynamic factor model. In particular, rewriting the model in equations (4) − (5) , or

the more general model in equation (3) in its moving average representation yields

Xt = B(L)Q∗−1ε∗t + ξt, (7)

where B (L) = Λ [(I − Φ (L)]−1 V and V =
[
Iq, 0

>
q(p−1)×q

]>
. Subsequently, the median and

a lower and upper percentile of the set of candidate impulse responses are typically shown

in a graph. However, as noted by Fry & Pagan (2011), the median is not represented

by only one model but in fact a mixture of many different structural models, so they

advocate to report the model closest to the median.
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Implementing the sign restrictions approach to a structural identification of VARs or dy-

namic factor models requires an effi cient algorithm for imposing zero and sign restrictions.

Recently, Rubio-Ramirez et al. (2010) propose an algorithm for imposing zero restrictions

and long-run restrictions in exactly identified models. Moreover, they propose an al-

gorithm for sign restrictions using the QR decomposition. Arias et al. (2014) and Binning

(2013) extend the work by Rubio-Ramirez et al. (2010) to allow for zero restrictions. As

discussed by Arias et al. (2014), whenever sign restrictions are combined with zero restric-

tions, it becomes crucial to condition the draw of Q on the zero restrictions. We build

our structural identification on the work by Arias et al. (2014) and Binning (2013) and

the algorithm of the former is repeated in the appendix of this paper.

[Does this section need a summary before moving on to estimation?]

2.5 Estimating the DFM by the EM algorithm

The linear Gaussian state space model in (3) with its latent factors ft is well repres-

ented in a Kalman filter setting. However, the Kalman filter needs the parameters

Θ = {Λ, R,Φ (L) ,W} as input and therefore does not estimate these. Building on the

seminal work by Dempster et al. (1977), Shumway & Stoffer (1982) introduce the Expect-

ation Maximization (EM) algorithm to estimate the parameters in state space models

as the model above. Essentially, the EM algorithm is an iterative maximum likelihood

method that switches between an Expectation step and Maximization step. The maxim-
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ization step results in the following closed form estimators at iteration j

vec
(
Λ(j)

)
= vec

(
DC−1

)
(8)

R(j) =
1

T

(
E −DC−1D>

)
(9)

vec
(
Φ(j)

)
= vec

(
BA−1

)
(10)

Q(j) =
1

T

[
C −BA−1B>

]
(11)

where the following moments are available from the Kalman smoother (indicated by sub-

script t|T ):

A =
∑T

t=1

(
F̂t−1|T F̂

>
t−1|T + P̂t−1|T

)
B =

∑T
t=1

(
F̂t|T F̂

>
t−1|T + P̂{t,t−1}|T

)
C =

∑T
t=1

(
F̂t|T F̂

>
t|T + P̂t|T

)
D =

∑T
t=1XtF̂

>
t|T

E =
∑T

t=1XtX
>
t

(12)

and where Ft is approximated by F̂t|T = E [Ft| XT ] . XT = {X1, .., XT} denotes the in-

formation set, P̂t|T = var (Ft| XT ) is the variance and P̂{t,t−1}|T = cov (Ft, Ft−1| XT ) is

the lag-one covariance. The estimates Θ(j) can then be used in the expectation step to

compute a new set of moments from the Kalman smoother. Subsequently, the estimated

moments are supplied to the maximization step above and the procedure continues until

convergence of the likelihood.

In order to implement the identifying loading restrictions of the model in equations (4)−

(5) we need a loading estimator subject to the imposed linear restrictions, denoted by Λ∗.

Bork et al. (2009) show that the restricted Λ∗ estimator subject to linear restrictions in
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the form HΛ vec Λ = κΛ takes this form

vec (Λ∗) = vec
(
DC−1

)
+
(
C−1 ⊗R

)
H>Λ

[
HΛ

(
C−1 ⊗R

)
H>Λ
]−1 {

κΛ −HΛ vec
(
DC−1

)}
(13)

• We are now ready to take our model to the data. Below we briefly present the data

and subsequently the empirical results.

3 Aggregate and regional data

In our application, the data consist of a rich panel X of 183 US aggregate economic and

financial time series as well as 75 Californian time series, of which 26 are metro-level

house price indices. The sample spans 1986:Q3 - 2014:Q1 and the choice of the starting

period is a comprimise between broad coverage and a suffi cient length of the time series.

Starting earlier would reduce the cross-sectional dimension, and the nominal house prices

would be much more noisy as explained in Del Negro & Otrok (2007). A full description

of the data is provided in the appendix. The US series represent the following categories

of macroeconomic and financial time series: industrial production; capacity utilization;

income; employment and hours worked; earnings, aggregate housing variables including

housing starts; consumption; orders and inventories; money and credit; bond and exchange

rates; consumer, producer and commodity prices; and stock prices. The Californian series

represent: labor force, unemployment, metro-level employment, delinquency rates and
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charge-offs; consumer prices; consumer confidence; retail sales; building permits; and

metro-level house prices indices from FHFA. All series are transformed into stationary

variables with zero mean and unit variance.

Given our focus on the Californian metropolitan house prices, we depict the annualized

mean nominal growth rates over the sample period in Figure 1. The mean annualized

house price growth rate across all metropolitan areas is 4%, with the San Francisco area

leading with 6%. The interior metropolitan areas like Bakersfield and Visalia-Porterville

have experienced growth rates around 2%, so even within California there is significant

differences in growth rates. The within state differences become even more significant

when we focus on the recent boom period defined as 2000:Q1-2006:Q2 and the bust

period from 2006:03-2009:Q38. Although the house prices appreciated even more in some

of the interior metropolitan areas during the boom compared to the San Francisco area,

Los Angeles area and San Diego area, then nevertheless, these metropolitan areas also

experienced a deep downturn during the bust; see Figure 2 and 3.

4 Empirical results

In this section, we present the results of taking the baseline model in baseline model in

equations (4)− (5) to the data described above. Specifically, we estimate a DFM with a

similar number of factors (q = 6) as in the baseline model. In fact, using the information

criterion by Hallin & Liska (2007) applied to the combined US and Californian dataset,

we estimate q̂ = 6 dynamic factors. Moreover, we find q̂ = 5 for the US dataset separtely,

8We define the boom and bust period similarly to Huang & Tang (2012)
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while q̂ = 3 for the Californian dataset which indicates common sources of variation in the

separate datasets. Later on, we will augment the baseline model with additional factors,

based on the fact that our factors are more restricted than the unrestricted factors and

to analyze whether there Californian house prices are in fact driven by a coastal house

price factor and a interior house price factor. Figure 4 depicts the estimated factors

and it can be seen that the first factor is very close related to US aggregate inflation(
fZπ,t
)
. The second factor is closely related to aggregate US employment, so this is our

approximation of US aggregate production
(
fZy,t
)
, i.e. a measure of real activity. The

third factor is defined as a Californian employment factor as a approximation of
(
fCy,t
)
.

The fourth factor is a Californian building permits factor which is required in order to

define a Californian housing supply and demand shock. The fifth factor is a common

Californian house price factor and the sixth factor is the perfectly measured monetary

policy rate.

Given the estimated dynamic factor model we can now conduct a structural analysis

based on the estimated reduced form residuals, ut, and the identification scheme in Tabel

1 above, where we impose cumulative sign restrictions over only J = 2 periods. The main

message in the forecast error variance decomposition is conveyed in Figure 5. Specific-

ally, in a forecast error variance decomposition, we calculate for a given forecast horizon

what fraction of the total forecast error variance for a particular variable as a result of a

specific shock, for instance the monetary policy shock. Hence, the forecast error variance

decomposition is similar to the R2 measure but for forecast errors at different horizons.

Focusing on the Californian metro-level house prices it can be seen that the primary

source of the variation in the house prices is regional housing supply shocks at the longer
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term while housing demand shocks play a bigger role at the medium term. Moreover,

housing demand also plays a role in explaing e.g. Californian retail sales whereas housing

supply plays a small role in explaining Californian unemployment. Notice also the almost

non-existing role of moneary policy shocks in the explanation of Californian house prices.

The impulse responses in Figures 6, 7, 8, 9, and 10 show the response of a subset of

observed variables to a one standard deviation shock to AS, AD, Housing supply, Housing

demand, and monetary policy, respectively. Although, some of the confidence bands are

wide, the impulse responses have the expected form. [[Add more comments]].

4.1 Augmenting the baseline model

Incomplete.

ft = vec
(
fZπ,t, f

Z
y,t, f

C
y,t, f

C
b,t, f

H
h,t, it

)

• The idea is to augment the baseline model with an additional two factors, so we

have q = 8 factors, ft = vec
(
fZπ,t, f

Z
y,t, f

C
y,t, f

C
b,t, f

H
h,t, it

)
, where fZy,t is defined as ca-

pacity utility factor and where an aggregate employment factor fZe,t is added as an

additional factor. Moreover, fCy,t is continues to be as a regional (Californian) em-

ployment factor fCe,t to catch regional employment trends. Finally, the Californian

house price factor is split into a coastal house price factor fChc,t and a Californian

interior house price fZhi,t based on the insights from a principal component analysis

of the panel of Californian house prices.
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5 Conclusion

This paper advances a large-dimensional dynamic factor models to analyze the sources of

variation in Californian metro-level house prices. Over-identifying loading restrictions are

a key to identify two US aggregate dynamic factors, three regional (Californian) factors

and a perfectly measured monetary policy rate. Specifically, we identify a US aggregate

inflation factor; a US aggregate employment factor; a Californian employment factor; a

Californian building permits factor and a common Californian housing price factor that

allow us to identify housing shocks; and, finally, a monetary policy factor. The precise

definition of the factors combined with zero restrictions help us in separating US shocks

from regional (Californian) shocks.

Using a combination of zero restrictions and sign restrictions we do find that aggregate

shocks play a role in explaining the variation of Californian metropolitan house prices,

but Californian housing demand and Californian housing supply shocks are the most

important.
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A Appendix

A.1 Data decription

Data description of the expanded dataset of N = 272 series over the period 1986 : Q1−
2014 : Q1. The third column contains transformation codes. For the individual variable

x, 1 means level, 2 means ∆x, 4 means lnxt, and 5 means lnxt − lnxt−1.

Table 2: Data series

Variables Units/base/index Code
US indl prod - final products and nonindustrial supplies vola index 2007=100 5
US indl prod - final products, total vola index 2007=100 5
US industrial production - manufacturing (sic) vola index 2007=100 5
US indl prod - electric and gas utilities vola index 2007=100 5
US indl prod - fuels vola index 2007=100 5
US indl prod - residential utilities vola index 2007=100 5
US indl prod - mining naics=21 vola index 2007=100 5
US indl prod - automotive products (consumer goods) vola index 2007=100 5
US indl prod - materials, total vola index 2007=100 5
US indl prod - consumer goods vola index 2007=100 5
US indl prod - business equipment vola index 2007=100 5
US indl prod - durable consumer goods vola index 2007=100 5
US indl prod - nondurable consumer goods vola index 2007=100 5
US indl prod - durable mfg (naics) vola index 2007=100 5
US industrial production - nondurable manufactures vola index 2002=100 5
US indl prod - nonenergy durable goods materials vola index 2007=100 5
US indl prod - nondurb goods materials vola index 2007=100 5
US real GDP pct. change at annual rates (ar) cona pct. 1
US real GDP pct. change-gross priv dom. investment, fixed (ar) cona pct. 1
US real GDP pct. change-gross priv fixed investment,nonres (ar) cona pct. 1
US real GDP pct. change-gross priv fixed investment,resident(ar) pct. 1
US real GDP pct. change - pce (ar) cona pct. 1
US real GDP pct. change - pce, durables (ar) cona pct. 1
US real GDP pct. change - pce, nondurables (ar) cona pct. 1
US real GDP pct. change - pce, services (ar) cona pct. 1
US indl utilization - manufacturing (sic) sadj pct. 1
US indl utilization - durable mfg (naics) sadj pct. 1
US indl utilization - nondurable mfg (naics) sadj pct. 1
US indl utilization - selected high-technology industries sadj pct. 1
US indl utilization - automobile and light duty motor vehicle sadj pct. 1
US indl utilization - computer and electronic product sadj pct. 1
US indl utilization - semiconductor and related equipment sadj pct. 1
US indl utilization - food sadj pct. 1
US ISM manufacturers survey: production index sadj index 1
US ISM purchasing managers index (mfg survey) sadj index 1
US ISM manufacturers svy results: production - net nadj pct. 1
US personal income less transfer payments cona usd bil 2009 chnd prc 5
US disposable personal income (monthly series) (ar) cona usd bil 2009 chnd prc 5
US disposable personal income (ar) (chg p/p) cura usd bil 1
US personal savings as a pct. of disposable personal income sadj pct. 1
US personal dividend income (ar) cura usd bil 5
US personal income receipts on assets cura usd bil 5
US total civilian employment vola ths. pers. 5
US employed, nonagriculture - (16 yrs+) (Househ. survey) vola ths. pers. 5
US unemployment rate sadj pct. 2
US unemployed (16 yrs and over) vola ths. pers. 2
US unemployed for less than 5 weeks vola ths. pers. 2
US unemployed for 5 to 14 weeks vola ths. pers. 2
US unemployed for 15 to 26 weeks vola ths. pers. 2
US unemployed for 15 weeks or more vola ths. pers. 2

Continued on next page
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Variables Units/base/index Code
US unemployed for 27 weeks and over vola ths. pers. 2
US average duration of unemployment (weeks) vola week 2
US employed - nonfarm industries total (payroll survey) vola ths. pers. 5
US employed - total private vola ths. pers. 5
US employed - goods-producing vola ths. pers. 5
US employed - natural resources and mining vola ths. pers. 5
US employed - construction vola ths. pers. 5
US employed - manufacturing vola ths. pers. 5
US employed - durable goods vola ths. pers. 5
US employed - nondurable goods vola ths. pers. 5
US employed - service-providing vola ths. pers. 5
US employed - trade, transportation, and utilities vola ths. pers. 5
US employed - wholesale trade vola ths. pers. 5
US employed - retail trade vola ths. pers. 5
US employed - financial activities vola ths. pers. 5
US employed - government vola ths. pers. 5
US employed - information vola ths. pers. 5
US employed - private service-providing vola ths. pers. 5
US employed - professional and business services vola ths. pers. 5
US employed - education and health services vola ths. pers. 5
US employed - leisure and hospitality vola ths. pers. 5
US workers on involuntary parttime - all industries vola ths. pers. 5
US initial claims for unemployment insurance (bci 5) vola ths. pers. 2
US ISM manufacturers survey: employment index sadj index 1
US ISM manufacturers svy results: employment - net nadj pct. 1
US unemployed-job losers and completed temp jobs as a pct. labor forc pct. 1
US nfib survey: pct. of firms with 1 or more hard to fill jobs sadj pct. 1
US consumer confidence currently - jobs not so plentiful sadj pct. 1
US consumer confidence currently - jobs plentiful sadj pct. 1
US consumer confidence in 6 months - jobs fewer sadj pct. 1
US consumer confidence in 6 months - jobs more sadj pct. 1
US avg wkly hours - nondurable goods vola hour 1
US hours worked of all persons - business sector (ar) vola pct. 1
US hours worked of all persons - manufacturing sector (ar) vola pct. 1
US hours worked of all persons-nonfarm business sector(pct. qoq,ar) pct. 1
US avg overtime hours - manufacturing vola hour 2
US avg overtime hours - durable goods vola hour 2
US avg o/t hours prod wrkrs - industrial machinery vola hour 2
US personal consumption expenditures (ar) cona usd bil 2009 chnd prc 1
US chain-type quantity index for personal consmptn.expend.s sadj index 2009=100 5
US chain-type quantity index for pce durables sadj index 2009=100 5
US chain-type quantity index for pce nondurables sadj index 2009=100 5
US chain-type quantity index for pce services sadj index 2009=100 5
US chain-type quantity index for pce goods sadj index 2009=100 5
US housing permits authorized - midwest (ar) vola ths. 2
US housing permits authorized - northeast (ar) vola ths. 2
US building permits to new private housing units vola ths. 2
US housing permits authorized - south (ar) vola ths. 2
US housing permits authorized - west (ar) vola ths. 2
US new private housing units started vola ths. 2
US housing started - midwest (ar) vola ths. 2
US housing started - northeast (ar) vola ths. 2
US housing started - south (ar) vola ths. 2
US housing started - west (ar) vola ths. 2
US new privately owned housing units completed (ar) vola ths. 2
US monthly supply of new homes on market vola month 1
US chg in priv invtry, autos, used (ar) cura usd bil 1
US inventory change - autos (ar) cura usd bil 1
US inventory change - new autos (ar) cura usd bil 1
US nfib survey: pct. may add to inventories less pct. may reduce sadj pct. 1
US ISM manufacturers survey: inventories index nadj index 1
US manufacturers new orders, consumer goods and materials cona usd mil 1982 prices 5
US ISM manufacturers survey: new orders index sadj index 1
US ISM new orders sadj pct. 1
US NFIB survey: pct. expecting higher sales less pct. expecting declin pct. 1
US New York stock exchange composite share price index index end 2002=5000 5
US Dow Jones industrials share price index (ep) nadj index 5
US Standard and Poors’500 composite - dividend yld pct. 1
US Standard and Poors’composite index (ep) index (1941-43=100) 5

Continued on next page
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Variables Units/base/index Code
US Standard and Poors’share price index - industrials (ep) index 5
US Standard and Poors’500 composite - real p/e ratio actual 1
CN Canadian dollars to 1 U.S. dollar (monthly average) voln cad 5
JP Japanese yen to US $ jpy 5
SW Swiss Francs To USD chf 5
UK US $ to 1 usd 5
US effective exchange rate narrow index - nominal nadj index 5
US federal funds rate (avg.) pct. 1
US T-bill spread 3 month - Fed Funds pct. 1
US T-bill spread 6 month - Fed Funds pct. 1
US corporate bond yield spread - Moody’s AAA - Fed Funds pct. period avrge. 1
US corporate bond yield spread - Noody’s BAA - Fed Funds pct. period avrge. 1
US US conventional ixed mortgages spread - 30 yr - Fed Funds pct. 1
US money supply zero maturity cura usd bil 5
US money supply m1 cura usd bil 5
US money supply m2 cura usd bil 5
US mny stock-institutional money funds(min investment over $50k) usd bil 5
US broad money (m3) sadj index 2010=100 5
US st. louis adjusted monetary base cura usd bil 5
US money stock - currency in circulation cura usd bil 5
US commercial and industrial loans outstanding (bci 101) cona usd mil 2009 chnd prc 5
US ratio of consumer credit outstanding to personal income(bci 9 pct. 2
US nonrevolving consumer credit outstanding cura usd bil 5
US consumer credit outstanding cura usd bil 5
US commercial bank assets - commercial and industrial loans cura usd bil 5
US commercial bank assets - consumer loans cura usd bil 5
US commercial bank assets - real estate loans cura usd bil 5
US resl mtg loans: all, 30 days delinquent sadj pct. 2
US resl mtg loans: all, foreclosures started sadj pct. 2
US ISM manufacturers survey: prices paid index sadj index 1
Spot market price: All 5
Spot market price: Metals 5
Spot market price: Raw ind. 5
US PPI - finished consumer foods sadj index 1982=100 5
US PPI - nonferrous metals nadj index 1982=100 5
US PPI - crude materials sadj index 1982=100 5
US PPI - finished consumer goods sadj index 1982=100 5
US PPI - finished goods sadj index 1982=100 5
US PPI - intermediate materials,supplies and components sadj index 1982=100 5
US CPI - apparel sadj index 1982-1984=100 5
US CPI - transportation sadj index 1982-1984=100 5
US CPI - medical care sadj index 1982-1984=100 5
US CPI - commodities sadj index 1982-1984=100 5
US CPI - durables sadj index 1982-1984=100 5
US CPI - all urban: all items sadj index 1982-1984=100 5
US CPI - services sadj index 1982-1984=100 5
US CPI - all items less food sadj index 1982-1984=100 5
US CPI - all items less food and energy (core) sadj index 1982-1984=100 5
US CPI - all items less shelter sadj index 1982-1984=100 5
US CPI - all items less medical care sadj index 1982-1984=100 5
US CPI - housing sadj index 1982-1984=100 5
US CPI - nondurables sadj index 1982-1984=100 5
US avg hourly real earnings - construction cona usd 1982-84 prices 5
US ahe prod wrkrs-durable goods cona usd 1982-84 prices 5
US ahe prod wrkrs-nondurable goods cona usd 1982-84 prices 5
US avg hourly real earnings - goods-producing cona usd 1982-84 prices 5
US avg hourly real earnings - manufacturing cona usd 1982-84 prices 5
US avg hourly real earnings - financial activities cona usd 1982-84 prices 5
US real hourly earnings - business sadj pct. 1
US avg hourly real earn- trade, transportation, and utilities cona usd 1982-84 prices 5
US avg hourly real earnings - private service-providing cona usd 1982-84 prices 5
US consumer confidence - expectations sadj index 1966m1=100 1
US CLI consumer sentiment sadj index 2005=100 1
US TCB CEO confidence survey - conditions in 6 months nadj pct. 1

CA labor force - California vola ths. pers. 5
CA labor force-bal of california,state less LA-long bea person 5
CA labor force - LA-long beach-glendale, ca md vola person 5
CA unemployment - California vola ths. pers. 2

Continued on next page
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Variables Units/base/index Code
CA unemployment rate - California sadj pct. 2
CA employment - California vola ths. pers. 5
All Employees: Total Nonfarm in Modesto, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Oxnard-Thousand Oaks-Ventura, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Riverside-San Bernardino-Ontario, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Salinas, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in San Diego-Carlsbad-San Marcos, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Santa Barbara-Santa Maria-Goleta, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Santa Rosa-Petaluma, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Stockton, CA (MSA) ths. of persons 5
All Employees: Total Nonfarm in Bakersfield, CA (MSA) ths. of persons 5
FRM, 30yr, F.Mac W 1
US resl mtg loans: all, 30 days delinquent, California nadj pct. 2
US resl mtg loans: all, 90+ days delinquent, California nadj pct. 5
US resl mtg loans: all, total delinquent, California nadj pct. 5
US resl mtg loans: all,foreclosure inventory, California nadj pct. 5
US resl mtg loans: all,foreclosures started, California nadj pct. 2
Total Nonperforming Loans for Commercial Banks in California ths. of dollars 2
Total Net Charge-offs for Commercial Banks in California ths. of dollars 2
CPI-U: Househ. energy in SF-Oakland-San Jose, CA (CMSA) index 1982-84=100 5
CPI-U: Utility (piped) gas service in SF-Oakland-San Jose, CA (CMSA) index 1982-84=100 5
CPI-U: Gasoline (all types) in SF-Oakland-San Jose, CA (CMSA) index 1982-84=100 5
CPI-U: All items in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Commodities in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Food in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Housing in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Shelter in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Fuels and utilities in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Househ. energy in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Househ. furnishings and operations in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Medical care in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Nondurables less food in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Services less medical care services in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Owners’equiv. rent of residences in LA-Riverside-Orange County, CA (CMSA) index december 1982=100 5
CPI-U: Utility (piped) gas service in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
CPI-U: Gasoline (all types) in LA-Riverside-Orange County, CA (CMSA) index 1982-84=100 5
US consumer confidence index - pacific nadj index 1985=100 1
Consumer Sentiment West 1
Real retail sales 5
Building Permits: total for California (SW) 5
Building Permits: 1-unit for California (SW) 5
Building Permits: 2-unit for California (SW) 5
Building Permits: 3-4 unit for California (SW) 5
Building Permits: 5-unit and more for California (SW) 5
House prices: Anaheim-Santa Ana-Irvine FHFA metro index 5
House prices: Bakersfield FHFA metro index 5
House prices: Chico FHFA metro index 5
House prices: Fresno FHFA metro index 5
House prices: LA-Long Beach-Glendale FHFA metro index 5
House prices: Madera FHFA metro index 5
House prices: Merced FHFA metro index 5
House prices: Modesto FHFA metro index 5
House prices: Napa FHFA metro index 5
House prices: Oakland-Hayward-Berkeley FHFA metro index 5
House prices: Oxnard-Thousand Oaks-Ventura FHFA metro index 5
House prices: Redding FHFA metro index 5
House prices: Riverside-San Bernardino-Ontario FHFA metro index 5
House prices: Sacramento—Roseville—Arden-Arcade FHFA metro index 5
House prices: Salinas FHFA metro index 5
House prices: San Diego-Carlsbad FHFA metro index 5
House prices: SF-Redwood City-South SF FHFA metro index 5
House prices: San Jose-Sunnyvale-Santa Clara FHFA metro index 5
House prices: San Luis Obispo-Paso Robles-Arroyo Grande FHFA metro index 5
House prices: San Rafael FHFA metro index 5
House prices: Santa Cruz-Watsonville FHFA metro index 5
House prices: Santa Maria-Santa Barbara FHFA metro index 5
House prices: Santa Rosa FHFA metro index 5
House prices: Stockton-Lodi FHFA metro index 5
House prices: Vallejo-Fairfield FHFA metro index 5

Continued on next page

25



Variables Units/base/index Code
House prices: Visalia-Porterville FHFA metro index 5

Proprietary data sources: Datastream. Public sources: Federal Reserve Economic Data (FRED). Federal Housing Finance
Agency.
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Figure 1: Mean growth rates of Californian metropolian house prices during the sample
period.
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The figure displays the annualized mean nominal growth rates of metro-level house prices in California over the period
1983:Q3 - 2014:Q3. The grey counties are excluded because of insuffi cient sample length.
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Figure 2: Mean growth rates of Californian metropolian house prices during the boom
period.
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The figure displays the annualized mean nominal growth rates of metro-level house prices in California during the boom
period defined as 2000:Q3 - 2006:Q2, similarly to Huang and Tang (2012). The grey counties are excluded because of
insuffi cient sample length. A few metropolitan areas are written in italics which indicates that their growth rates are
outside the bounds given by the right-hand-side bar. The use of capital letters only, are an abbreviation of the metropolitan
name given in the adjacent county.
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Figure 3: Mean growth rates of Californian metropolian house prices during the bust
period.
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The figure displays the annualized mean nominal growth rates of metro-level house prices in California during the bust
period defined as 2006:Q3 - 2009:Q3, similarly to Huang and Tang (2012). The grey counties are excluded because of
insuffi cient sample length. A few metropolitan areas are written in italics which indicates that their growth rates are
outside the bounds given by the right-hand-side bar. The use of capital letters only, are an abbreviation of the metropolitan
name given in the adjacent county.
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Figure 4: Estimated factors from the baseline model.
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Factor 3 is strongly related to Californian non-farm employment (correlation: 0.93) 
Factor 4 is strongly related to Californian building permits (correlation is 1). 
Factor 5 is strongly related to house prices in Oakland-Hayward-Berkeley metropolitan area 
Factor 6 is the perfectly measured monetary policy rate.  
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The figure displays the estimated dynamic factors from the baseline model using the EM algorithm.
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Figure 5: Forecast error variance decomposition based on the baseline model.
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Forecast error variance decomposition.

The figure displays the variance decomposition of the baseline model. Specifically, we decompose the variation in e.g. house
prices in Los Angeles Long Beach Glendale metropolitan area into a small idiosyncratic component, an even smaller role
for monetary policy, a larger role of US aggregate demand and US aggregate supply, but with the predominant source of
variation from housing supply (longer term) and housing demand (medium term). The horizontal axis display the horizon
in quarters.

The figure displays the responses of a subset of observed variables from the panel due to a one standard deviation shock.
Horizontal axis is measured in quarters and the vertical axis in standard deviation.
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Figure 6: Impulse responses of the observed variables following a favourable AS shock
(baseline model).
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Figure 7: Impulse responses of the observed variables following an AD shock (baseline
model).
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Note: Vertical axis in standard deviations. Horizontal axis in months. Shock(2).

The figure displays the responses of a subset of observed variables from the panel due to a one standard deviation shock.
Horizontal axis is measured in quarters and the vertical axis in standard deviation.
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Figure 8: Impulse responses of the observed variables following a positive Californian
housing supply shock (baseline model).
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Note: Vertical axis in standard deviations. Horizontal axis in months. Shock(3).

The figure displays the responses of a subset of observed variables from the panel due to a one standard deviation shock.
Horizontal axis is measured in quarters and the vertical axis in standard deviation.
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Figure 9: Impulse responses of the observed variables following a positive Californian
housing demand shock (baseline model).
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Note: Vertical axis in standard deviations. Horizontal axis in months. Shock(4).

The figure displays the responses of a subset of observed variables from the panel due to a one standard deviation shock.
Horizontal axis is measured in quarters and the vertical axis in standard deviation.
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Figure 10: Impulse responses of the observed variables following a contractionary monet-
ary policy shock (baseline model).
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Note: Vertical axis in standard deviations. Horizontal axis in months. Shock(5).

The figure displays the responses of a subset of observed variables from the panel due to a one standard deviation shock.
Horizontal axis is measured in quarters and the vertical axis in standard deviation.
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