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1 Introduction

In recent years, factor models have become a standard tool in applied macroeco-

nomics and �nance.1 The increasing popularity of these models can be explained

by two model features. First, factor models distinguish measurement errors and

other idiosyncratic disturbances from common structural shocks. As such, fac-

tor models provide a direct mapping from observed data to their theoretical

and structural counterparts2. Second, large data sets are becoming increasingly

available and classical multivariate regression models generally perform poorly in

�tting them. By contrast, factor models can handle large panels by exploiting

the dynamic and cross-sectional structure of the panel. Speci�cally, various tech-

niques have recently been developed to estimate large-dimensional factor mod-

els. For instance, Stock and Watson (2002a,b) and Forni et al. (2000) propose a

non-parametric estimation approach based, respectively, on static and dynamic

principal components. In related work, Otrok and Whiteman (1998) and Kim

and Nelson (1999) propose a Bayesian estimation technique, whereas Doz et al.

(2006, 2007) and Jungbacker and Koopman (2008) use an estimation approach

based on the EM algorithm.

In this paper we discuss the economic identi�cation of factors and shocks in the

context of the dynamic factor model (DFM) introduced by Bai and Ng (2007)

and Forni et al. (2000). In particular, we propose a procedure that imposes

a speci�c and well-de�ned economic interpretation on the dynamic factors and

the structural common shocks. The economic interpretation of the factors is

1In empirical macroeconomics they have been used for predictions (Bernanke and Boivin
(2003), Forni et al. (2005), and Stock and Watson (2002a,b)); for structural analysis (Forni and
Reichlin (1998), Forni and Gambetti (2010), Forni et al. (2008), Giannone et al. (2004, 2002),
Houssa (2008a), Bernanke et al. (2005), Bork (2008) and Stock and Watson (2005)); and for
constructing business cycle indicators (Altissimo et al. (2007)Forni et al. (2001), Kose et al.
(2003), Houssa (2008b), and Otrok and Whiteman (1998)). Applications of factor models in
�nance include the arbitrage pricing theory (Chamberlain and Rothschild (1983) and Ingersoll
(1984)); the measurement of risks (Campbell et al. (1997)); the estimation of the conditional
risk-return relation in Ludvigson and Ng (2007); bond market applications (Mönch (2008),
Ludvigson and Ng (2009) and Diebold et al. (2008)); and the prediction of the volatility of
asset returns (Alessi et al. (2007)).

2Typically, these theoretical counterparts are de�ned within a DSGE model (see for example
Altug (1989), Sargent and Sims (1977), Sargent (1989) and, recently, Boivin and Giannoni
(2006)).
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based on a set of over-identifying restrictions on factor loadings3, while a set

of standard restrictions on the impulse response functions are used to identify

the structural shocks. We integrate these identi�cation restrictions within the

iterative maximum likelihood estimation approach proposed by Doz et al. (2006,

2007).

We illustrate our procedure by revisiting the panel data analyzed in Bernanke

et al. (2005). We aim at identifying and extracting from the data panel �ve

macroeconomic factors, respectively related to in�ation, economic activity, com-

modity prices, money demand and monetary policy. Given the identi�cation of

these factors, we assess and analyze (as in Bernanke et al. (2005)) the impact

of monetary policy shocks on a number of key macroeconomic variables through

impulse response analysis and variance decompositions. We �nd that our iden-

ti�cation procedure generates a more precise assessment of the impact of the

monetary policy shocks, when compared to the standard SVAR or FAVAR.

Our paper is closely related to a number of recent studies. Boivin et al. (2009) and

Reis and Watson (2008) impose loadings restrictions to identify a measure of pure

in�ation for the US economy. In the same way, Forni and Reichlin (2001) and Kose

et al. (2003) use loading restrictions to di¤erentiate between world, regional and

country factors. Finally, Boivin and Giannoni (2006) employ loading restrictions

to estimate the theoretical concepts, de�ned in a DSGE model. Alternatively,

recent studies provide an economic interpretation to structural shocks in DFM, see

for example Giannone et al. (2004); Forni and Gambetti (2010), Houssa (2008a)

and Forni et al. (2008). The contribution of this paper is twofold. First, we

combine the identi�cation of both the dynamic factors and the structural shocks

in a DFM framework. As such, we obtain a clear macroeconomic interpretation

for both the (static and dynamic4) factors and shocks (see sections 2 and 3).

Second, by directly integrating the linear identi�cation restrictions in the EM

algorithm, we obtain closed-form solutions for factor loadings and dynamics.

3Alternative types of identi�cation schemes in DFMs, among which exclusion restrictions
and loading restrictions, are discussed in the literature; see for instance Stock and Watson
(2005), Reis and Watson (2008), Forni and Reichlin (2001) and Kose et al. (2003).

4Static factors are related to the variance-covariance matrix of the data while dynamic factors
capture the property of their spectral density matrix. See Bai and Ng (2007) and Forni et al.
(2000) for details.
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The remainder of the paper is organized as follows. First, the methodological

approach is explained in Section 2. We introduce a dynamic factor model and

discuss the identi�cation restrictions. In addition, closed-form solutions for the

parameter estimates, consistent with the identi�cation schemes and using results

from Shumway and Sto¤er (1982) and Wu et al. (1996), are presented. An em-

pirical illustration is provided in Section 3. Section 4 concludes.

2 Methodology

We �rst introduce the DFM (see for instance Bai and Ng (2007) and Forni et al.

(2000)). Subsequently, we employ the quasi maximum likelihood estimation ap-

proach as in Doz et al. (2006, 2007). We take this approach one step further

by imposing over-identifying restrictions on the loadings and on the impulse re-

sponse function (IRF). This allows a clear economic interpretation of the (static

and dynamic) factors and a structural identi�cation of the shocks.

2.1 Dynamic Factor Model

Consider a panel of observable economic variables yi;t; where i denotes the cross-

section unit, i = 1; :::; N while t refers to the time index, t = 1; :::; T: The panel

of observed economic variables is transformed into stationary variables with zero

mean and unit variance. These transformed variables are labeled by xi;t. Dynamic

factor models assume that a variable xi;t can be decomposed into two components,

the common component, �i;t; and the idiosyncratic component �it:

xi;t = �i;t + �i;t: (1)

Furthermore, in exact dynamic factor models it is assumed that the idiosyncratic

and common components are uncorrelated at all leads and lags and across all

variables, i.e. E(�i;t�j;s) = 0; 8 s; t; i; j: The common component, �i;t, is assumed
to be driven by a small number q; q << N; of common dynamic factors ft = (f1;t
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f2;t; � � � ; fq;t)
0
:

xi;t = �i(L)ft + �i;t; (2)

with

�i(L) = �i;0I + �i;1L+ :::+ �i;sL
s

where �i;j denotes a 1 � q vector containing the loadings for observable series i
on the j-th lag of the factors; the typical element of �i;j; i.e. �

k
i;j; (k = 1; :::; q);

denotes the loading on the k-th factor at lag j for series i: Stacking equation (2)

over all cross-section units, xi;t; i = 1; :::; N; gives:

Xt = �0ft + �1ft�1 + : : :+ �sft�s + �t; (3)

where Xt = (x1;t; : : : ; xN;t)
0, �t = (�1;t; : : : ; �N;t)

0; and �j; j = 0; :::; s; is a N � q
matrix of series-speci�c factor loadings, �j = [�

0
1;j; �

0
2;j; ::; �

0
N;j]

0:

To close the model, we assume that the q-dimensional vector of common dynamic

factors ft has a VAR(p) representation:

�(L)ft = �t; (4)

where �(L) = I � �1L � �2L2 � : : : � �pLp; with �j denoting a q � q matrix
of autoregressive coe¢ cients (j = 1; : : : ; p): Moreover, given the stationarity of

the transformed panel; we impose stationarity on the DFM by requiring that the

modulus of the roots of �(L)�1 lie outside the unit circle. The q-dimensional

vector of dynamic factor innovations is denoted by �t. As in Doz et al. (2006),

we make additional distributional assumptions: �t � i:i:d N (0; Q) and �t � i:i:d
N (0; R) ; with Q and R denoting (semi-) positive de�nite matrices5.

5Note that, by assuming i.i.d idiosyncratic components, (3)-(4) de�ne an exact DFM as
opposed to an approximate factor model where some correlation is allowed among idiosyncratic
components. An exact factor structure is certainly a strong assumption, particularly in the
case of large panel data sets where cross-sectional and serial correlations are expected to be
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Following Bai and Ng (2007), Forni et al. (2000) and Stock and Watson (2002b)

the model (equations (3) and (4)) can be restated as a static factor model with

a r � 1; r = q(s+ 1); static factors Ft; Ft = (f 0t ; :::; f 0t�s)0 :

Xt = �Ft + �t; (5)

Ft = �Ft�1 + V Sut; (6)

where � = (�0; :::; �s) is the N � r matrix loading, implied by the dynamic factor
loadings �j, j = 0; :::; s; � is the r � r companion matrix corresponding to �(L);
V =

�
I 0; 00(r�q)�q

�0
, and ut represents the structural common shocks that are

identi�ed through the matrix S (see sub-section 2:2:2 below): Inverting the VAR

in (6) and substituting Ft in (5) gives

Xt = B(L)ut + �t; (7)

where B(L) = �(I � �L)�1V S; represents the IRF to ut:

The state-space system, de�ned by equations (5) and (6), is not uniquely identi-

�ed. We address the econometric identi�cation as well as the economic interpre-

tation of the factors in section 2:2:1. Finally, the identi�cation of the structural

shocks ut is discussed in section 2:2:2.

2.2 Economic interpretation

Economic interpretation of the factors and shocks is achieved by imposing two

types of identi�cation restrictions: (i) loading restrictions allowing for a clear

macroeconomic interpretation of the factors, and (ii) restrictions on the IRF

identifying the structural common shocks.

found. As such, (3)-(4) represent a missspeci�ed model. However, Doz et al. (2006) show that,
for large N and T the exact factor model estimators are consistent quasi-maximum likelihood
estimators for the approximate factor model.
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2.2.1 Economic factors

We impose a set of linear restrictions on the loading matrix �; (equation (5)),

and denote the restricted loading matrix by �� = (��0; :::; �
�
s): �

�
j denotes an N�q

matrix of restricted factor loadings at lag j; with typical entry �k�i;j, the possibly

restricted loading for series i on factor k at lag j: The linear loading restrictions

take the following general form:

H�vec(�
�) = ��; (8)

where �� refers to a `� 1 vector of ` linear combinations of restrictions of factor
loadings de�ned by H�; H� 2 R`�Nr:

We use two types of loading restrictions, depending on the information content

of the observables. In particular, economic identi�cation is achieved by means

of (i) unbiasedness restrictions and/or (ii) exclusion restrictions. Both types of

restrictions are imposed on the dynamic factor loadings �ki;j.

The unbiasedness restriction implies that the contemporaneous value of the ob-

servable xi;t is an unbiased and direct information variable for the k-th factor

fk;t; k = 1; 2; : : : ; q; :

�k�i;0 = 1

�l�i;0 = 0 for l 6= k
�l�i;j = 0 for j = 1; :::; s; for l = 1; :::; q:

(9)

This type of restrictions is used on observables that are assumed to be a direct

measure (up to an idiosyncratic component) of the underlying factor. For in-

stance, our empirical application assumes that the observable �CPI-u all items�

in�ation is a direct measure for the in�ation factor. As such, the unbiasedness

restrictions imply a unit loading of �CPI-u all items� in�ation on the contem-

poraneous in�ation factor and zero loadings on all other factors and all lagged

factors. Note that by imposing at least one unbiasedness restriction on each of

the q dynamic factors allows for the econometric identi�cation of the DFM (see

Geweke and Singleton (1981)) and the economic interpretation of the factors.
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Exclusion restrictions, i.e. the case where xi;t is unrelated to fk;t or lags of fk;t:

These restrictions take the form of:

�l�i;j = 0 for j = 0; :::; s; for l = k: (10)

In the empirical application we use this type of restriction to exclude variables

that do not have a direct information content on the factors.

Note that this identi�cation scheme formalizes and extends the standard infor-

mal identi�cation procedures used in the literature. The standard approach is to

identify the factors from the dominant factor loadings of the economic variables,

disregarding the smaller loadings. Our identi�cation procedure formalizes this

approach by (i) imposing exclusion restrictions on the non-informative variables,

which ensures that only information of relevant variables is incorporated in the

factor and (ii) facilitating interpretation of the factors by means of the unbi-

asedness restrictions imposing a direct mapping between the observables and the

(static and dynamic) factors.

Finally, we allow for feedback e¤ects across factors. Speci�cally, through the

VAR speci�cation of the transition equation (equation (6)), we allow for dynamic

interactions among factors. As such, factors can be correlated and structural

shocks are eventually transmitted across all observables.

2.2.2 Structural shocks

In equation (7), structural shocks are identi�ed. We follow the standard identi-

�cation procedure in the SVAR literature by choosing an appropriate matrix S

such that the implied restricted IRF, B(L)�; has an economic justi�cation. For

instance, the Blanchard and Quah (1989) long-run restrictions can be obtained

by choosing S such that appropriate elements of B(1)� are equal to zero. Sign

restrictions, recently introduced by Uhlig (2005), can also be ful�lled by choosing

S such that the time path of some elements of B(L)� have an appropriate sign.

Finally, structural identi�cation can be obtained by imposing the Sims (1980)�s

triangular representation on the matrix S. This is the approach followed in our
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empirical application in section 3. We use the exclusion restrictions implied by

the Cholesky decomposition of Q = SS 0; with S lower triangular. The structural

interpretation of the shocks is then implied by the ordering of the factors and

discussed in more detailed in section 3.

2.3 Estimation: the EM algorithm

Given the latent nature of the static factors, a standard EM algorithm is used

to estimate the parameters and to extract the implied factors. Denote by � =

f��; R;�; Qg the set of parameters to be estimated with �� satisfying the set of
identi�cation restrictions listed in equation (8). Conditional on the estimates of

the factors, F̂ (and matrices measuring uncertainty P̂ ); the elements of � can be

estimated by (Maximization step):

vec (��) = vec (DC�1)

+ (C�1 
R)H 0
� [H� (C

�1 
R)H 0
�]
�1 f�� �H� vec (DC�1)g ;

(11)

where

R = 1
T
G;

vec (�) = vec (BA�1) ;


 = V QV 0 = 1
T
[C �BA�1B0] ;

(12)

and the estimator for �� follows from extending results in Wu et al. (1996).6

Conditional on the estimated parameters, �; the latent factors can be extracted

by means of the Kalman smoother and the required moments can be computed

6A derivation of the estimator is available on request.
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(Expectation step). In particular, the following expectations are generated:

A =
PT

t=1

�
P̂t�1jT + F̂t�1jT F̂

0
t�1jT

�
;

B =
PT

t=1

�
F̂tjT F̂

0
t�1jT + P̂ft;t�1gjT

�
;

C =
PT

t=1

�
F̂tjT F̂

0
tjT + P̂tjT

�
;

D =
PT

t=1XtF̂
0
tjT ;

G =
PT

t=1(Xt � ��F̂tjT )(Xt � ��F̂tjT )0 + ��P̂tjT��0;

(13)

with:
F̂tjT = E(Ft j XT );

P̂tjT = E((Ft � F̂tjT )(Ft � F̂tjT )0 j XT );

P̂ft;t�1gjT = E((Ft � F̂tjT )(Ft�1 � F̂t�1jT )0 j XT );

(14)

where E(� j �) denotes the conditional expectations operator implied by the
Kalman smoother (as a function of �), see for instance de Jong and Mackin-

non (1988) and de Jong (1989). XT = fX1; : : : ; XTg denotes the information
set. We iterate sequentially over the M-step in equation (11) and the E-step in

equation (13) until convergence of the likelihood starting from di¤erent sets of

initial values.7

7We de�ne convergence using a relative tolerance of 10�4 for the log-likelihood. In our em-
pirical application discussed in section 3 the unrestricted model involves N(q(s+1)+1)+q2(s+
1) + q(q+1)

2 parameters. Although the numbers of parameters to be estimated is considerable,
it is computationally feasible with the EM algorithm. Doz et al. (2006) suggest to initialize the
Kalman �lter by the parameters implied by principal components and then �lter the factors.
We follow a somewhat di¤erent approach by �ltering the factors implied by a loading structure
imposing a one-to-one contemporaneous relation between the respective factors and their clos-
est observable variable. All other loadings are initialized at zero. Given these loadings we �lter
the initial factors, using a dynamic representation with relatively small eigenvalues (i.e. 0.4.).
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3 Empirical Application

We illustrate our procedure by revisiting the large data panel analyzed in Bernanke

et al. (2005). This data set captures the dynamics of a wide range of macroeco-

nomic developments in the US economy over the last decades. In particular, the

sample consists of 120 time series (monthly frequency) over the period 1959 : 1

to 2001 : 8.8 The main focus of our empirical analysis is to i) extract a number

of factors with an unambiguous (macro) economic interpretation and ii) analyze

the impact of monetary policy shocks on the US economy. We �rst discuss the

identi�cation restrictions of the factors and shocks. Subsequently, we analyze

the extracted factors and we use impulse response functions (IRFs) and vari-

ance decompositions to study the impact of monetary policy shocks on the US

economy.

3.1 Identi�cation

The identi�cation proceeds in two steps. First, we select the number of dynamic

factors, q; and the number of lags, p = s+ 1, in the VAR of the dynamic factors

(see equation 4). Second, restrictions are imposed to identify and interpret in

macroeconomic terms the factors and structural shocks.

3.1.1 Number of factors

Our preferred speci�cation contains �ve dynamic factors (bq = 5) : This choice is
primarily based on information criteria of Hallin and Liska (2007), suggesting

values of q within a range of 3 to 6 (see Figure 1). The choice of �ve dynamic

factors does not con�ict with the statistical tests, and is in line with the range

proposed in the literature. For example, Giannone et al. (2004) argue that the

number of shocks (dynamic factors) driving the US economy is equal to two

8The data are already transformed by Bernanke et al. (2005) to reach stationarity; see
Bernanke et al. (2005) for details on the data set and on the transformations. Prior to the
estimation, we de-mean the series and divide them by their standard deviation such that the
resulting series have zeros mean and unit variance.
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(i.e. bq = 2). Stock and Watson (2005) analyzing the same data set argue that

seven dynamic factors and nine static factors are required ( bq = 7). Bai and Ng
(2007) and Hallin and Liska (2007) opt for bq = 4: Bernanke et al. (2005) prefer a
model speci�cation with four factors (bq = 4). Finally, Forni and Gambetti (2010),
combining various information criteria, estimate the number of dynamic factors

for the US economy in between 4 and 7.

Insert Figure 1 and Table 1

We select the number of lags in equation (4) based on an evaluation of the BIC and

AIC information criteria. Speci�cally, for each lag speci�cation, p = 1; : : : ; 13; of

the dynamic factors we estimate the implied DFM, extract the identi�ed economic

factors and report the BIC and AIC of the respective transition equations. Table

1 shows that the optimal number of lags suggested by this procedure is bp = 2:

In the empirical section we will both discuss the optimal model bp = 2 (implying
10 static factors) as well as, following Bernanke et al. (2005) or Banbura et al.

(2010), a bp = 13 model (implying 65 static factors).

3.1.2 Economic interpretation of factors and shocks

We identify �ve dynamic factors, capturing a relatively wide array of economic

concepts or interpretations, relevant for empirical monetary policy analysis. Given

the economic interpretation of the �ve dynamic factors all remaining static fac-

tors (being the lagged values of identi�ed dynamic factors) inherit the respective

economic interpretations.

The identi�cation of the �rst three dynamic factors is motivated by the small-scale

theoretical macroeconomic models. In particular, we retain three main macro-

economic factors: an in�ation factor (�); an economic activity factor (y); and a

monetary policy factor (i).9 Given that the focus of the empirical application is

on the impact of monetary policy shocks, we additionally introduce two informa-

tion factors, facilitating the identi�cation of monetary policy shocks. Speci�cally,

9These are also some of the prime factors discussed by Stock and Watson (2005).
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we identify a commodity price factor (pcom) capturing information on expected

in�ation pressures, and a money market factor (m) allowing to distinguish be-

tween general money market shocks and monetary policy shocks (see for instance

Sims (1986)) and Christiano et al. (1999)).

The identi�cation of the respective factors is obtained in two steps. In the �rst

step, we �x the interpretation of the factors by imposing a set of unbiasedness

restrictions on the �ve observables closest to the economic interpretation of each

of the factors. This results in an exactly identi�ed system (along the lines of

Proposition 2 in Geweke and Singleton (1981)). This exactly identi�ed latent

factor model is labelled as the �unrestricted model�. The target observables of

the factors are: the CPI-all items index (series 108) for the in�ation factor (�);

the Industrial Production-total index (series 16) for the economic activity factor

(y); the Index of Sensitive Materials prices (series 107) for the commodity price

factor (pcom); the e¤ective federal funds rate (series 77) for the monetary policy

rate factor (i).10

In the next step, over-identifying restrictions are imposed in the form of exclusion

restrictions and additional unbiasedness restrictions. First, the speci�c set of

additional over-identifying restrictions can be summarized as follows; the in�ation

factor (�) is identi�ed by unbiasedness restrictions on all CPI and PPI variables

(excluding commodity price indices). With the in�ation factor being a nominal

factor, we exclude from the information set all real variables, e.g. industrial

production. The economic activity factor (y), identi�ed by the unbiasedness

restriction on all the Industrial Production (IP) indices, uses next to IP variables

other real variables as information sources11, including (un)employment, income,

capacity utilization, and consumption series. The monetary policy factor (i) is

uniquely identi�ed by the federal funds rate while themoney market factor (m) is

�ltered using unbiasedness restrictions on all monetary aggregates (M0; ::;M3) and

using deposit and credit variables as additional information variables. Finally, the

commodity price factor (pcom) is identi�ed through the unbiasedness restriction

on the Index of Sensitive Material Prices while both the Crude Material PPI and

10See appendix A for the de�nition and numbers assigned to each observable in the data
panel.
11Information variables are allowed to load on contemporaneous and on lagged factors. Hence,

their loadings are estimated as free parameters.
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NAPM commodity price indices are used as additional information variables.

Second, exclusion restrictions are primarily imposed on slow-moving variables.12

This modeling choice is motivated by the idea that fast moving variables, contain-

ing a speculative component, can be considered as general and timely information

variables for macroeconomic developments. We di¤erentiate between nominal (in-

�ation), real (economic activity), information13 (money market and commodity

price factors), and policy (Fed rate) factors. In our identi�cation strategy, nom-

inal factors exclude all types of real variables as (contemporaneous an lagged)

information sources. In the same way, real factors exclude nominal variables.

Information factors exclude all slow-moving real and nominal variables.

A �nal set of exclusion restrictions identi�es the structural shocks through a stan-

dard Cholesky decomposition of the variance-covariance matrix of disturbances

in the state equation (equation(6)). The ordering used in the analysis is as fol-

lows: pcom; �; y; i; m: This ordering is in line with the identi�cation of monetary

policy shocks in the literature (see for example Sims (1986) and Christiano et al.

(1999)). Note that in the empirical application we focus on the impact of mon-

etary policy shocks on the state of the economy. The exact ordering of shocks

before the monetary policy shock hence does not matter and results will be robust

against any reordering of �; pcom or y:

3.2 Empirical Results

3.2.1 Model performance

In this section we provide a statistical test on the over-identifying restrictions. In

particular, we perform an LR-test of our restricted model against the unrestricted

12We use the de�nition of fast- and slow-moving variables of Bernanke et al. (2005) except
for monetary aggregates determining the money market factor or the NAPM commodity price
index determining the commodity price factor.
13Information variables (or information factors) are assumed to be monitored by central banks

because they may display relevant information that is not available in typical macroeconomic
variables. See Leeper et al. (1996), Christiano et al. (1999) and very recently Bjørnland and
Leitemo (2009) for a discussion. Examples of fast moving variables include auction market
commodity prices, stock prices, and options on �nancial instruments.
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(exactly identi�ed) model. We complement this test by a number of measures

of �t including R2, AIC, BIC and the log-likelihood value. Table 2 reports the

results. As expected, the over-identifying restrictions are rejected at the usual

signi�cance level. Moreover, there is a signi�cant drop in the overall explanatory

power of the model. While the unrestricted model explains about 50 percent our

speci�cation has an average R-squared of about 40 percent. While this drop in

overall explanatory power is signi�cant, we gain an unambiguous interpretation

of the underlying factors. Interestingly both the AIC ad BIC information criteria

marginally prefer the restricted version of the model, which is due to the large

number of restrictions imposed (see Table 2).

Insert Table 2

3.2.2 Implied factors

Figure 2 presents the times series of the �ltered factors (with imposed economic

interpretation) together with the main observed target variables for the VAR(2)

model with all restrictions imposed. For instance, the top left panel shows the

extracted in�ation factor (obtained from the imposed restrictions) and contrasts

it with the realized CPI (all items) in�ation (series 108). For economic activity

(top right panel), we display the retrieved factor and contrast it with the growth

rate of total industrial production (series 16). Visual inspection shows that the

retrieved factors capture well the low and medium frequency dynamics of the

target series. In particular, the in�ation factor captures about 40 percent of

the overall variation in the CPI all-items series, and over 61 percent of the low

and intermediate variation.14 Analogously, the economic activity factor captures

about 32 percent of the growth variation in industrial production total index

(all items). Removing short term variation in the growth rate, this explained

variation increases to over 64 percent. For the commodity price index we only

explain about 28 percent of total variation. The money market factor explains

14We use an HP �lter to �lter out the higher frequency components. To that end we use
a HP �lter with � = 100: This choice of lambda allows su¢ cient amount of variability in the
trend time series.
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more than 32 percent of total variation for the M1 money growth rate, and about

33 percent of the low and intermediate frequencies. The monetary policy factor

�ts the Fed rate by construction.

Insert Figures 2 till 6

Additionally, Figures 3 till 6 contrast the respective factors to each of the series

that were considered informative for the respective factors i.e. were subjected

to unbiasedness restrictions. The main conclusion emerging from these �gures

is that, overall, the respective factors capture well the underlying low frequency

dynamics in each of the observed series. These observations corroborate the

economic interpretation of the factors as imposed through the cross-equation

restrictions, allowing to interpret the retrieved factors according to the targeted

economic concepts.

Figures 7 till 8 give a graphical representation of the estimated factor loadings

for each of the 120 observable series for each of the factors.15 Note that in the

�gure we sum the loadings per factor over the lags.

Insert Figures 7 and 8

The �gures are illustrative for two reasons. First, they clearly express the set of

restrictions imposed in the identi�cation procedure and second, they display the

unrestricted loadings. As can be observed from panel (a) of Figure (7), loading

restrictions for the in�ation factor impose a unit loading on all observed in�ation

series (i.e. series 102 till 117) and zero restrictions on slow-moving real variables.

Equivalently, for the economic activity factor unit loading restrictions were im-

posed on all production indices (series 1 till 16) where we allow for additional

free loading estimates on other real variables (e.g. employment, consumption,

income...). In the same line of reasoning, the commodity price factor loads on

index of sensitive material while the money market factor loads on respective

money supply series. Finally, we use a one to one relation between the monetary

policy factor and the e¤ective federal funds rate. In general no loading restric-

15The list of variables and their exact de�nition, along with the quali�cation of fast- or slow
moving variables can be found in Appendix 1.
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tions were imposed on the fast moving variables. Instead, these loadings were

estimated freely and as can be observed these variables often load signi�cantly

on the respective factors. For example, we �nd signi�cant and positive loadings

of stock market returns, housing starts and inventories on the economic activity

factor.

3.2.3 Measuring the impact of monetary policy

We use our model to analyze the overall impact of monetary policy shocks on the

US economy. To facilitate comparison with the literature we perform two types

of analyses. First, following e.g. Bernanke et al. (2005), Forni and Gambetti

(2010) and Marcellino et al. (2005) we compare the IRF implied by our DFM to

the standard SVAR speci�cation. Second, as in Bernanke et al. (2005), Banbura

et al. (2010) and Forni and Gambetti (2010), we focus on the impact of monetary

policy shocks on twenty key indicators for the US economy.

Insert Figure 9

Figure 9 compares the IRFs of a 25 basis points contractionary monetary policy

shocks between the SVAR (left panel) and our DFM (right panel). All reported

IRFs are measured in terms of unconditional standard deviations. We focus on

the VAR (2) speci�cation, modeling the dynamics of the �ve target series; CPI-all

items; commodity price index, money (M1), and the Fed rate. In line with the

literature, the IRFs implied by the SVAR display both the price puzzle and overall

smaller and more delayed responses to monetary policy shocks. In contrast,

the IRFs implied by our DFM are theoretically more plausible. First, we no

longer observe the price puzzle. Speci�cally, we identify a signi�cant decrease in

prices following a contractionary monetary policy shock. This result corroborates

recent �ndings in the DFM literature attributing the price puzzle to the restrictive

nature of information set used in the SVAR estimation (see for instance, Bernanke

et al. (2005), Forni and Gambetti (2010) and Marcellino et al. (2005)). Note

however, that using our identi�cation scheme, we recover a statistically signi�cant

price e¤ect of monetary policy shocks. Second, in accordance with Forni and
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Gambetti (2010) we �nd larger impact of monetary policy shocks. For instance,

our results show that a 25 basis points contractionary monetary policy shock

leads to a 25 basis points decrease in the price level at the the two year horizon.

Also, the maximum e¤ect, a 50 basis points drop, on industrial production is

reached after 1.5 years. This typical hump-shape IRF is more in line with the

theory than the strongly delayed response of industrial production as implied by

the SVAR.

We now turn to the second part, analyzing in more detail the impact of monetary

policy shocks on the US economy. More speci�cally, we analyze the IRFs of the

following economic indicators: federal funds rate, the yen per US dollar exchange

rate, the level of industrial production, the consumer price level (CPI), monetary

aggregates, the capacity utilization, the (un)employment level, the average hourly

earnings, the level of consumption and consumer con�dence expectations as key

indicators for the macroeconomy. Additionally, we cover housing starts and two

�nancial market indicators: the return on the NYSE composite and the �ve year

treasury yield. We present two versions of the impulse response functions, a �rst

one based on the parsimonious two lag model and an additional one where we

allow for thirteen lags. We include the latter model as the thirteen lag model to

compare our results with Bernanke et al. (2005) and Banbura et al. (2010).

Insert Figures 10 and 11

Figures 10 and 11 display the IRFs of each of these variables to a 25 basis points

monetary policy shock for respectively the two and the thirteen lag models. The

sign and magnitude of the IRFs are in line with the literature (see Christiano

et al. (1999)) and suggest that the model is able to identify accurately the key

macroeconomic transmission mechanisms for the monetary policy shock.

Several observations can be made in this respect. First, unlike standard small-

scale VAR models, we do no longer observe a persistent price puzzle. In the two

lag model no price puzzle appears, while in the 13 lag model we observe a short-

lived and small initial price increase, followed by strong price drops. Second, in

line with the �ndings in the literature, a contractionary monetary policy shock
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has a negative impact on production where the maximal e¤ect is reached within

one to three years, depending on the model speci�cation. Note that similar hump-

shape (shorter lived) patterns are observed for alternative measures of economic

activity e.g. capacity utilization, employment. Third, long-run neutrality of

monetary policy cannot be rejected. In particular, monetary policy shocks only

have a temporary e¤ect on production, consumption, capacity utilization, and

(un)employment levels. Our IRFs (not shown) indicate a return to the pre-

shock situation within a ten year period. Fourth, the impact of temporary policy

shocks is initially negative on the consumption expectations but then reverses

before the impact becomes neutral in the long-run. Finally, the results show

a signi�cant impact of monetary policy shocks on �nancial markets. Monetary

policy tightening increases the bond yields with the short-term yields responding

more than the long-term yields, as illustrated by the IRF of the 3 month and

5 year yield. However, given the moderate persistence of the policy shocks (see

the IRF of the federal funds rate), the impact on bond yields of monetary policy

shocks remains relatively small and temporary. Real estate markets, as illustrated

by the IRF of the housing starts, initially contract strongly to the monetary policy

shock although there is no long-run e¤ect. Following a monetary tightening, we

observe an initial drop in the stock prices while the yen tends to depreciate against

the US dollar. These IRFs match both the responses reported in Banbura et al.

(2010), using a BVAR and Bernanke et al. (2005) and Forni and Gambetti (2010)

using factor models. Moreover, the main features of these IRFs are robust to the

speci�cation of the lag length (for lags between 2 and 13) of the model.

Insert Table 3

Table 3 presents the variance decomposition of the selected variables at alterna-

tive forecasting horizons. This tool allows us to assess the relative importance

of monetary policy shocks in the overall variation of the series. Our results are

broadly in line with those reported both in Forni and Gambetti (2010). In line

with this study, we observe that monetary shocks have an important long-run (60

month) impact on the forecast error variance of a broad selection of key macro-

economic and �nancial variables. Speci�cally, we �nd that a monetary policy
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shock explains in between 10% and 30% of the variation in industrial production,

consumer prices, commodity prices, (un)employment, new orders, and housing.

Moreover, in line with results reported in Banbura et al. (2010), using a BVAR

and Bernanke et al. (2005) monetary policy shocks explain only marginal amounts

of the variation in consumption indicators. Finally, the estimates reported in Ta-

ble 3 indicate that monetary policy shocks are mildly persistent and account for

approximately 27 percent of total long-run variation in the federal funds rate (at

the 60 month horizon) and of about 20 percent for the bond yields. Our estimates

hence suggest a smaller long-run impact of monetary policy shocks than in for

instance Bernanke et al. (2005), reporting up to 45 percent. More in line with

our results are Banbura et al. (2010) and Forni and Gambetti (2010), reporting

similarly small numbers.

4 Conclusion

This paper has proposed a methodology to identify factors within the framework

of dynamic factor models. We impose an economic interpretation on the (static

and dynamic) factors through a set of over-identifying restrictions on the factor

loadings. We modify the standard estimation methodology to incorporate these

over-identifying loading restrictions. In particular, following Shumway and Sto¤er

(1982) and Wu et al. (1996), the appropriate parameter estimators and �lters

based on the EM algorithm are discussed.

In the empirical application the paper focuses on identifying a set of �ve factors

with economic interpretation. These factors represent key measures of the US

economy such as in�ation, economic activity, commodity prices, money market

pressure and monetary policy. The obtained factors are empirically plausible

measures for each of the targeted key concepts, listed above. Subsequently, we

use the model to assess the overall impact of monetary policy on the US economy.

Our results are in line with those obtained using alternative methods on large

panels, e.g. FAVARs or large BVARs, and suggest identify an important role for

monetary policy shocks in macroeconomic dynamics.
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A Data description

Data are from Bernanke et al. (2005).

The second column is a mnemonic and a * indicates a "slow-moving" variable. Fourth

column contains transformation codes. "level" indicates an un-transformed variable,

say xt: "ln" means lnxt and "� ln" means lnxt � lnxt�1:

Real output and income

1 IPP* 1959:01�2001:08 � ln Industrial production: products, total (1992 = 100,SA)

2 IPF* 1959:01�2001:08 � ln Industrial production: �nal products (1992 = 100,SA)

3 IPC* 1959:01�2001:08 � ln Industrial production: consumer goods (1992 = 100,SA)

4 IPCD* 1959:01�2001:08 � ln Industrial production: durable cons. goods (1992 = 100,SA)

5 IPCN* 1959:01�2001:08 � ln Industrial production: nondurable cons. goods (1992 = 100,SA)

6 IPE* 1959:01�2001:08 � ln Industrial production: business equipment (1992 = 100,SA)

7 IPI* 1959:01�2001:08 � ln Industrial production: intermediate products (1992 = 100,SA)

8 IPM* 1959:01�2001:08 � ln Industrial production: materials (1992 = 100,SA)

9 IPMD* 1959:01�2001:08 � ln Industrial production: durable goods materials (1992 = 100,SA)

10 IPMND* 1959:01�2001:08 � ln Industrial production: nondur. goods materials (1992 = 100,SA)

11 IPMFG* 1959:01�2001:08 � ln Industrial production: manufacturing (1992 = 100,SA)

12 IPD* 1959:01�2001:08 � ln Industrial production: durable manufacturing (1992 = 100,SA)

13 IPN* 1959:01�2001:08 � ln Industrial production: nondur. manufacturing (1992 = 100,SA)

14 IPMIN* 1959:01�2001:08 � ln Industrial production: mining (1992 = 100,SA)

15 IPUT* 1959:01�2001:08 � ln Industrial production: utilities (1992 = 100,SA)

16 IP* 1959:01�2001:08 � ln Industrial production: total index (1992 = 100,SA)

17 IPXMCA* 1959:01�2001:08 level Capacity util rate: manufac., total (% of capacity,SA) (frb)

18 PMI* 1959:01�2001:08 level Purchasing managers�index (SA)

19 PMP* 1959:01�2001:08 level NAPM production index (percent)

20 GMPYQ* 1959:01�2001:08 � ln Personal income (chained) (series #52) (bil 92$,SAAR)

21 GMYXPQ* 1959:01�2001:08 � ln Personal inc. less trans. payments (chained) (#51) (bil 92$,SAAR)
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(Un)employment and hours

22 LHEL* 1959:01�2001:08 � ln Index of help-wanted advertising in newspapers (1967 = 100;SA)

23 LHELX* 1959:01�2001:08 ln Employment: ratio; help-wanted ads: no. unemployed clf

24 LHEM* 1959:01�2001:08 � ln Civilian labor force: employed, total (thous.,SA)

25 LHNAG* 1959:01�2001:08 � ln Civilian labor force: employed, nonag. industries (thous.,SA)

26 LHUR* 1959:01�2001:08 level Unemployment rate: all workers, 16 years and over (%,SA)

27 LHU680* 1959:01�2001:08 level Unemploy. by duration: average (mean) duration in weeks (SA)

28 LHU5* 1959:01�2001:08 level Unemploy. by duration: pers unempl. less than 5 wks (thous.,SA)

29 LHU14* 1959:01�2001:08 level Unemploy. by duration: pers unempl. 5 to 14 wks (thous.,SA)

30 LHU15* 1959:01�2001:08 level Unemploy. by duration: pers unempl. 15 wks = (thous.,SA)

31 LHU26* 1959:01�2001:08 level Unemploy. by duration: pers unempl. 15 to 26 wks (thous.,SA)

32 LPNAG* 1959:01�2001:08 � ln Employees on nonag. payrolls: total (thous.,SA)

33 LP* 1959:01�2001:08 � ln Employees on nonag. payrolls: total, private (thous.,SA)

34 LPGD* 1959:01�2001:08 � ln Employees on nonag. payrolls: goods-producing (thous.,SA)

35 LPMI* 1959:01�2001:08 � ln Employees on nonag. payrolls: mining (thous.,SA)

36 LPCC* 1959:01�2001:08 � ln Employees on nonag. payrolls: contract construc. (thous.,SA)

37 LPEM* 1959:01�2001:08 � ln Employees on nonag. payrolls: manufacturing (thous.,SA)

38 LPED* 1959:01�2001:08 � ln Employees on nonag. payrolls: durable goods (thous.,SA)

39 LPEN* 1959:01�2001:08 � ln Employees on nonag. payrolls: nondurable goods (thous.,SA)

40 LPSP* 1959:01�2001:08 � ln Employees on nonag. payrolls: service-producing (thous.,SA)

41 LPTU* 1959:01�2001:08 � ln Employees on nonag. payrolls: trans. and public util. (thous.,SA)

42 LPT* 1959:01�2001:08 � ln Employees on nonag. payrolls: wholesale and retail (thous.,SA)

43 LPFR* 1959:01�2001:08 � ln Employees on nonag. payrolls: �nance, ins. and real est (thous.,SA)

44 LPS* 1959:01�2001:08 � ln Employees on nonag. payrolls: services (thous.,SA)

45 LPGOV* 1959:01�2001:08 � ln Employees on nonag. payrolls: government (thous.,SA)

46 LPHRM* 1959:01�2001:08 level Avg. weekly hrs. of production wkrs.: manufacturing (sa)

47[5] LPMOSA* 1959:01�2001:08 level Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (sa)

48 PMEMP* 1959:01�2001:08 level NAPM employment index (percent)

Consumption

49[4] GMCQ* 1959:01�2001:08 � ln Pers cons exp (chained)� total (bil 92$,SAAR)

50 GMCDQ* 1959:01�2001:08 � ln Pers cons exp (chained)� tot. dur. (bil 96$,SAAR)

51 GMCNQ* 1959:01�2001:08 � ln Pers cons exp (chained)� nondur. (bil 92$,SAAR)

52 GMCSQ* 1959:01�2001:08 � ln Pers cons exp (chained)� services (bil 92$,SAAR)

53 GMCANQ* 1959:01�2001:08 � ln Personal cons expend (chained)� new cars (bil 96$,SAAR)

Housing starts and sales

54 HSFR 1959:01�2001:08 ln Housing starts: nonfarm (1947�1958); tot. (

55 HSNE 1959:01�2001:08 ln Housing starts: northeast (thous.u.)s.a.

56 HSMW 1959:01�2001:08 ln Housing starts: midwest (thous.u.)s.a.

57 HSSOU 1959:01�2001:08 ln Housing starts: south (thous.u.)s.a.

58 HSWST 1959:01�2001:08 ln Housing starts: west (thous.u.)s.a.

59 HSBR 1959:01�2001:08 ln Housing authorized: total new priv housing (thous.,SAAR)

60 HMOB 1959:01�2001:08 ln Mobile homes: manufacturers�shipments (thous. of units,SAAR)
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Real inventories, ordes and un�lled orders

61 MNV 1959:01�2001:08 level NAPM inventories index (percent)

62 PMNO 1959:01�2001:08 level NAPM new orders index (percent)

63 PMDEL 1959:01�2001:08 level NAPM vendor deliveries index (percent)

64 MOCMQ 1959:01�2001:08 � ln New orders (net)� consumer goods and materials, 1992 $ (bci)

65 MSONDQ 1959:01�2001:08 � ln New orders, nondefense capital goods, in 1992 $s (bci)

Stock prices

66 FSNCOM 1959:01�2001:08 � ln NYSE composite (12/31/65 = 50)

67 FSPCOM 1959:01�2001:08 � ln S&P�s composite (1941�1943 = 10)

68 FSPIN 1959:01�2001:08 � ln S&P�s industrials (1941�1943 = 10)

69 FSPCAP 1959:01�2001:08 � ln S&P�s capital goods (1941�1943 = 10)

70 FSPUT 1959:01�2001:08 � ln S&P�s utilities (1941�1943 = 10)

71 FSDXP 1959:01�2001:08 level S&P�s composite common stock: dividend yield (% per annum)

72 FSPXE 1959:01�2001:08 level S&P�s composite common stock: price-earnings ratio (%,NSA)

Foreign exchange rates

73 EXRSW 1959:01�2001:08 � ln Foreign exchange rate: Switzerland (swiss franc per US$)

74 EXRJAN 1959:01�2001:08 � ln Foreign exchange rate: Japan (yen per US$)

75 EXRUK 1959:01�2001:08 � ln Foreign exchange rate: United Kingdom (cents per pound)

76 EXRCAN 1959:01�2001:08 � ln Foreign exchange rate: Canada (canadian $ per US$)

Interest rates and spreads

77 FYFF 1959:01�2001:08 level Interest rate: federal funds (e¤ective) (% per annum,nsa)

78 FYGM3 1959:01�2001:08 level Interest rate: us tbill,sec mkt,3-mo. (% per ann,nsa)

79 FYGM6 1959:01�2001:08 level Interest rate: us tbill,sec mkt,6-mo. (% per ann,nsa)

80 FYGT1 1959:01�2001:08 level Interest rate: ust const matur., 1-yr. (% per ann,nsa)

81 FYGT5 1959:01�2001:08 level Interest rate: ust const matur., 5-yr. (% per ann,nsa)

82 FYGT10 1959:01�2001:08 level Interest rate: ust const matur., 10-yr. (% per ann,nsa)

83 FYAAAC 1959:01�2001:08 level Bond yield: moody�s aaa corporate (% per annum)

84 FYBAAC 1959:01�2001:08 level Bond yield: moody�s baa corporate (% per annum)

85 SFYGM3 1959:01�2001:08 level Spread fygM3� fy¤

86 SFYGM6 1959:01�2001:08 level Spread fygm6� fy¤

87 SFYGT1 1959:01�2001:08 level Spread fygt1� fy¤

88 SFYGT5 1959:01�2001:08 level Spread fygt5� fy¤

89 SFYGT10 1959:01�2001:08 level Spread fygt10� fy¤

90 SFYAAAC 1959:01�2001:08 level Spread fyaaac� fy¤

91 SFYBAAC 1959:01�2001:08 level Spread fybaac� fy¤
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Money and credit quantity aggregates

92 FM1 1959:01�2001:08 � ln Money stock: M1 (bil$,SA)

93 FM2 1959:01�2001:08 � ln Money stock: M2 (bil$,SA)

94 FM3 1959:01�2001:08 � ln Money stock: M3 (bil$,SA)

95 FM2DQ 1959:01�2001:08 � ln Money supply� M2 in 1992 $s (bci)

96 FMFBA 1959:01�2001:08 � ln Monetary base, adj for reserve requirement changes (mil$,SA)

97 FMRRA 1959:01�2001:08 � ln Depository inst reserves: total, adj for res. req chgs (mil$,SA)

98 FMRNBA 1959:01�2001:08 � ln Depository inst reserves: nonbor., adj res req chgs (mil$,SA)

99 FCLNQ 1959:01�2001:08 � ln Commercial and indust. loans outstanding in 1992 $s (bci)

100 FCLBMC 1959:01�2001:08 level Wkly rp lg com. banks: net change com and ind. loans (bil$,SAAR)

101 CCINRV 1959:01�2001:08 � ln Consumer credit outstanding nonrevolving g19

Price indexes

102 PMCP 1959:01�2001:08 level NAPM commodity prices index (%)

103 PWFSA* 1959:01�2001:08 � ln PPI: �nished goods (82 = 100,SA)

104 PWFCSA* 1959:01�2001:08 � ln PPI: �nished consumer goods (82 = 100,SA)

105 PWIMSA* 1959:01�2001:08 � ln PPI: intermed mat. sup and components (82 = 100,SA)

106 PWCMSA* 1959:01�2001:08 � ln PPI: crude materials (82 = 100,SA)

107 PSM99Q* 1959:01�2001:08 � ln Index of sensitive materials prices (1990 = 100) (bci-99a)

108 PUNEW* 1959:01�2001:08 � ln CPI-u: all items (82�84 = 100,SA)

109 PU83* 1959:01�2001:08 � ln CPI-u: apparel and upkeep (82�84 = 100,SA)

110 PU84* 1959:01�2001:08 � ln CPI-u: transportation (82�84 = 100,SA)

111 PU85* 1959:01�2001:08 � ln CPI-u: medical care (82�84 = 100,SA)

112 PUC* 1959:01�2001:08 � ln CPI-u: commodities (82�84 = 100,SA)

113 PUCD* 1959:01�2001:08 � ln CPI-u: durables (82�84 = 100,SA)

114 PUS* 1959:01�2001:08 � ln CPI-u: services (82�84 = 100,SA)

115 PUXF* 1959:01�2001:08 � ln CPI-u: all items less food (82�84 = 100,SA)

116 PUXHS* 1959:01�2001:08 � ln CPI-u: all items less shelter (82�84 = 100,SA)

117 PUXM* 1959:01�2001:08 � ln CPI-u: all items less medical care (82�84 = 100,SA)

Average hourly earnings

118 LEHCC* 1959:01�2001:08 �ln Avg hr earnings of constr wkrs: construction ($,SA)

119 LEHM* 1959:01�2001:08 �ln Avg hr earnings of prod wkrs: manufacturing ($,SA)

Miscellaneous

120 HHSNTN 1959:01�2001:08 level U. of mich. index of consumer

29



Table 1: Lag Selection transition equation.

Lag: p = s+ 1 No. static Factor: r AIC BIC R2 (total model)
Lag 1 5 -15.984 -15.777 36.86
Lag 2 10 -19.814 -19.399 40.07
Lag 3 15 -16.441 -15.82 42.07
Lag 4 20 -19.492 -18.663 43.70

: : : : : : : : : : : :
Lag13 65 -14.717 -12.023 47.95

Notes: R2 is a simple average of the R-squared of the 120 series; AIC denotes Akaike Information Criterion; BIC is
Bayesian Information Criterion

Table 2: Model Performance.

R2 AIC BIC Log Lik p-value for LR test

Exactly Identi�ed Model 49:8 1:797 1:907 �54371 �

Our (Restricted) Model 40:1 1:789 1:799 �54787 0:0000

R2 is a simple average of the R-squared of the 120 series; AIC denotes Akaike Information Criterion; BIC is Bayesian
Information Criterion; and Log Lik is the Log-Likelihood value.

Table 3: Forecast error variance due to monetary policy shocks.

Variables 0 month 1 months 12 months 24 months 60 months
77) Federal funds 0.72 0.66 0.27 0.24 0.27
16) IP: total index 0.00 0.01 0.17 0.18 0.18
108) CPI-U: all items 0.00 0.00 0.09 0.21 0.31
78) US Tbill. 3m. 0.30 0.36 0.21 0.19 0.23
81) Tbond const 5yr. 0.22 0.25 0.20 0.14 0.17
96) Monetary base 0.07 0.13 0.13 0.14 0.13
92) Money stock: M1 0.07 0.14 0.13 0.14 0.14
74) FX : Japan 0.04 0.06 0.09 0.09 0.09
107) Index of sensitive mat. 0.00 0.01 0.19 0.17 0.16
17) Capacity util rate 0.00 0.00 0.20 0.22 0.22
49) Pers cons exp: total 0.00 0.00 0.03 0.03 0.03
50) Pers cons exp: tot. 0.00 0.00 0.02 0.02 0.02
51) Pers cons exp: nondur. 0.00 0.00 0.02 0.02 0.02
26) Unempl. Rate: all wrks 0.00 0.00 0.11 0.12 0.12
48) NAPM Empl. Index 0.00 0.00 0.26 0.27 0.27
119) Avg hr earnings manuf. 0.00 0.00 0.02 0.02 0.02
54) Housing starts: nonfarm 0.06 0.16 0.53 0.49 0.48
62) NAPM new orders 0.00 0.04 0.33 0.31 0.32
68) NYSE composite 0.06 0.07 0.08 0.08 0.08
120) Consumer expec. (Mich.) 0.00 0.00 0.03 0.05 0.18
.
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