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ABSTRACT 

Technology-driven gains in productivity and profitability can dramatically improve 

quality of life for the rural poor in developing countries. Extension efforts to disseminate 

agricultural technologies typically assume that farmers learn from early adopters, which 

catalyzes the diffusion process. In this paper we investigate network effects on farmers’ 

demand for Laser Land Leveling (LLL) —a resource conserving technology—in eastern 

Uttar Pradesh, India. Empirically assessing network effects is notoriously difficult 

because of the reflection problem: it is not usually possible to determine if farmers adopt 

technologies because others in their networks use them, or because they share 

characteristics with adopters in their networks and thus make similar decisions. To 

circumvent this problem, we identified would-be adopters using an experimental auction 

and, from among these farmers, randomly selected first-generation adopters to purchase 

actual LLL services on their land. We employ a second auction one year later to elicit 

willingness to pay from all sample farmers. We find that having a first-generation adopter 

in a farmer’s network increases his valuation of LLL by 25% on average. Using changes 

in farmers’ input usage between the two auctions, we find that this network effect is 

importantly conditioned on the benefits associated with LLL, which implies that learning 

– rather than mimicry – are driving network effects.  

 

JEL Codes: O13, O14, Q16 

  



1 INTRODUCTION 

Technological innovation in agriculture can make agriculture more productive and 

profitable to the rural poor in developing countries, improving their day-to-day quality of 

life and household food security. One particular class of innovations—resource-

conserving technologies—are designed not only to increase productivity and reduce 

production costs, but also to alleviate negative environmental externalities and use water 

and soil resources more sustainably. Based on growing concerns about climate change, 

resource constraints and vulnerability, these technologies and practices have attracted 

widespread attention in recent years. While understanding how farmers learn about new 

agricultural technologies is generally important, the diffusion process of these resource-

conserving technologies with their mix of private and public benefits may introduce new 

complications – and make it simultaneously more important and more challenging to 

understand the underlying learning process.  

Farmers have multiple sources of agricultural information at their disposal, some 

more valued than others. Farmers often rely on their social networks as their most trusted 

and reliable source of information regarding the suitability, profitability, and use of new 

technologies. Farmer networks are therefore fundamental to most agricultural extension 

strategies: where farmers are geographically or socially dispersed, and where public 

resources for technology promotion are scarce, farmer networks can be used to widely 

disseminate new technologies. Such strategies typically depend on reaching out to 

“progressive” or “model” farmers to demonstrate the technology and incite adoption, in 

the hopes that other farmers will follow (Anderson and Feder, 2004). In some instances, 

this dissemination process can be accelerated through direct interventions such as 



subsidies or discounts for early adopters because the information externality generated by 

these adopters might increase adoption in subsequent periods, even if the technology is 

no longer subsidized (Kremer and Miguel, 2007). Other strategies may use social 

mobilization—bringing farmers together in cooperatives, self-help groups, or community 

organizations—to similarly leverage these network effects (Vasilaky, 2012). Empirical 

evidence of farmer-to-farmer technology spillovers and their magnitudes, however, is 

relatively scarce to date.  

One reason that empirical studies of network effects have been historically rare is 

that they confront a significant identification challenge due to the reflection problem 

(Manski, 1993). The reflection problem occurs because under most circumstances it is 

not possible to determine if two farmers use similar technologies because one learns from 

or mimics the other or because the farmers are merely similar or face similar conditions 

and constraints. Many observational studies on social networks have implemented 

creative and highly convincing strategies to identify network effects, often taking 

advantage of panel data (Bandiera and Rasul, 2006, Conley and Udry, 2010, Foster and 

Rosenzweig, 1995, Maertens, 2012, McNiven and Gilligan, 2012, Munshi, 2004, Munshi 

and Myaux, 2006). Recently, a handful of studies— including, but not limited to, 

agriculture—have used randomized interventions, or field experiments, to identify 

network effects (Babcock and Hartman, 2010, Cai, 2013, Duflo, et al., 2006, Duflo and 

Saez, 2003, Kremer and Miguel, 2007, Ngatia, 2012, Oster and Thornton, 2012). The fact 

that experimental results often contradict observational results, even when these are based 

on analyses of experimental data as if they were observational (Duflo, et al., 2007, Duflo, 



et al., 2006, Kremer and Miguel, 2007), highlights the potential importance of using 

experimental interventions to identify network effects,  

In this paper we present findings on network effects on agricultural technology 

demand from a field experiment that randomly assigns custom hire of a new agricultural 

technology to farmers in three districts of eastern Uttar Pradesh (EUP), India. The 

technology in question is laser land leveling (LLL), a resource conserving technology, 

which we describe below. Because LLL equipment is expensive and requires some skill 

to operate, most Indian farmers – and all smallholders – are likely to access LLL though 

rental arrangements known as custom hire services. This study uses a pair experimental 

auctions held one year apart to measure farmer demand for LLL. These auctions were 

binding: if a farmer bid enough for LLL services on their land they could expect to pay 

real money out of pocket and receive real LLL custom hire services. After the first 

auction, we held a lottery to determine who would actually purchase services. Using this 

randomization, we are able to test for the effect of having an adopting farmer in a 

farmer’s social network on demand for the technology, conditional on the number of 

would-be adopters in his1 network. Because we measure demand in terms of farmer 

willingness to pay (WTP) rather than observed adoption, we can measure network effects 

on in monetary terms as opposed to increased uptake at a given price. We find that 

farmers with early adopters in their network exhibit WTP 25% higher than the sample 

average. 

This study also aims to distinguish network effects arising from learning from 

mimicry. We collected irrigation and other input use data for the one-year period between 

                                                           
1 We use masculine pronouns throughout for ease of composition. In our sample, 84 percent of study 
farmers were male. 



the two auctions, which allowed us to separate out the effect of having a farmer who 

benefited more from LLL in one’s network from the effect of having a farmer who 

benefited less. We find that having a farmer who benefited more from LLL had a positive 

impact on demand, whereas having a farmer who benefited less did not. This finding 

suggests that farmers in our sample learned about the benefits of adoption by observing 

adopters in their social networks, and that this learning increased demand.  

 

2 LASER LAND LEVELING IN INDIA  

In flood-irrigated rice-wheat systems of the Indo-Gangetic Plains, 10-25 percent of 

irrigation water is lost because of poor management and uneven fields. Uneven fields can 

also lead to inefficient use of fertilizers and chemicals, increased biotic and abiotic stress, 

and low yields (Jat, et al., 2006). Farmers in this region, like most farmers around the 

world, have long recognized that level plots are easier to cultivate and are more efficient 

than uneven plots and have devised several cultivation practices and techniques 

accordingly, including the use of contoured levees and manual leveling with planks. In 

this sense, Laser Land Leveling (LLL) does more precisely what farmers have tried to do 

since the inception of irrigated agriculture. LLL uses a stationary emitter to project a 

level laser plane above a plot and an adjustable scraper with a laser receiver pulled by a 

tractor to level the plot using the laser plan as a guide. Whereas the best traditional 

leveling methods have a leveling precision of ±4 cm or worse, LLL can level   even large 

plots2 to a precision of ±1 cm (Jat, et al., 2006).  

                                                           
2 LLL is feasible for plots of nearly all sizes. The only exception is plots that are so small as to make it 
difficult to maneuver the tractor and scraper, which for standard dimensions occurs at plot sizes less than 
0.2 acre. 



The primary benefit of LLL is a reduction in water use. This is particularly 

important in the Indo-Gangetic Plains, where groundwater is being extracted at 

increasingly unsustainable rates, and where farmers still rely on flood irrigation, which 

requires them to irrigate until the highest point of the field is submerged. Although Indian 

farmers do not pay unit charges for the water they use, most farmers must pump irrigation 

water and therefore incur savings in the form of diesel fuel costs from such a reduction in 

water usage. LLL has also been shown to improve crop establishment and growth, 

thereby improving the efficiency of chemical and fertilizer use while decreasing the 

damage caused by biotic and abiotic stress, ultimately leading to production cost 

reductions and increases in output and yields (Jat, et al., 2006).  

In India, LLL was initially introduced in western Uttar Pradesh in 2001. Since 

then, the technology has achieved widespread acceptance in some areas of the Indo-

Gangetic Plains (IGP)—notably in the agriculturally progressive Indian states of Haryana 

and Punjab. In this region, the number of laser land levelers has risen to 925 and the 

acreage under LLL grew to 200,000 hectares in 2008. Agronomic trials in rice-wheat 

systems in this region have found that LLL results in 10-30 percent irrigation savings, 3-6 

percent increases in effective farming area, 6-7 percent increases in nitrogen use 

efficiency, and 3-19 percent increases in yield (Jat, et al., 2006, Jat, et al., 2009). In on-

farm trials, net annual farmer revenues rose from $200-300 per hectare (Jat, et al., 2009). 

LLL could also have public benefits in the form of reduced groundwater depletion and 

lower nutrient and chemical runoff. Jat et al. (2006) estimate that extended use of LLL to 

2 million hectares of rice-wheat land in the IGP could save 1.5 million hectare-meters of 



irrigation water and 200 million liters of diesel, increase crop production by $500 million, 

and reduce greenhouse gas emissions by 0.5 million metric tons over three years. 

In contrast to these more agriculturally developed regions of India, LLL is new to 

the more heterogeneous and poorer EUP region. Farmers in this region have smaller 

plots, and their production practices are less input intensive. Private LLL service 

providers have yet to extend their services networks to this quite different region, in part 

because the business models they have developed in the western IGP may not be viable 

in the EUP. In a companion paper, we use the auction data we describe below to simulate 

novel business models to deliver LLL in the heterogeneous EUP (Lybbert et al. 2012). In 

this paper, we exploit the lack of familiarity with LLL in the region to study if and how 

network effects increase demand for the technology. While LLL has been introduced 

very sparsely into EUP via small-scale demonstrations, our sampling design ensures that 

the farmers in our sample have little or no exposure to these demonstrations. 

 

3 EXPERIMENTAL DESIGN AND DATA COLLECTION  

3.1 Study site and Sample 

Uttar Pradesh state (UP) covers 243,000 km2 and is home to 200 million residents, a 

remarkable population density even by Indian standards. UP is highly agrarian and 

relatively poor; 70 percent of the population lives in poverty according to a recent 

Multidimensional Poverty Index (Alkire and Santos, 2010), and EUP is relatively poor 

compared to the rest of the state. 

 The main crops grown in the area are rice and wheat, followed by mustard, 

sugarcane, pulses, maize, and other crops. Farmers cultivate rice during the summer 



kharif season when the monsoon provides much of the water needed for irrigation.3 

Farmers cultivate wheat in the winter rabi season when the crop depends more on 

irrigation throughout the growing season. Unlike areas in the western IGP where canals 

are a significant source of irrigation water, EUP depends primarily on groundwater that is 

extracted by diesel, rather than electric, pumps. Because LLL is completely new to EUP 

and there is no market or price information for the technology, this is an appropriate 

study area in which to gauge demand using an experimental auction. EUP is also an ideal 

location to test network effects on learning because information on the technology is 

essentially non-existent outside of the intervention.  

For this study we selected three districts—Maharajganj, Gorakhpur, and Deoria—

to represent heterogeneity across farm size and productivity in rice and wheat cropping 

systems within the region. In each district, we randomly selected four villages from 

among those with a population greater than 48 households and less than 400 households. 

We set the lower limit to ensure there would be at least 20 rice-wheat farming households 

to participate in the study, and upper limit to avoid incomplete village rosters and the 

possibility that we would not capture any network links.  For each district, a population 

of 400 households per village is greater than the 90th percentile of all villages.  

To ensure our intervention would be the only source of information about LLL we 

did not select villages in the proximity of any of the few LLL demonstrations being 

conducted in EUP. Following consultations with individuals involved in agricultural 

research, extension services, and farm equipment sales and custom hiring, we were able 

to pinpoint locations where LLL demonstrations and related demonstrations of resource-

                                                           
3 During the kharif season most irrigation water is used for flooding the rice fields. 



conserving technologies in EUP had been held.4 Villages within a ten-kilometer radius of 

any LLL demonstrations were excluded from the sample, as were any villages where 

related promotions of resource-conserving technologies had been conducted. In the final 

sample only six farmers reported ever hearing of LLL, two farmers reported ever seeing 

LLL machinery, and one farmer reported ever using LLL, or knowing the market price of 

LLL hire.5 

For each of these twelve villages, we randomly chose a paired village that met the 

same population criteria, was within a five-kilometer radius, and was not within a 10-

kilometer proximity to any previously selected village pair. Villages were selected in 

pairs to assess the spatial reach of social networks both within villages and across 

villages.6 Within each village, we randomly selected approximately 20 farmers from 

those cultivating plots of at least 0.2 acres (the minimum sized plot for LLL) to be 

included in the study.7 The resulting sample totaled 478 farmers.  

3.2 Experimental Design 

In each village the study unfolded as depicted in Figure 1. First, the enumeration team 

conducted a scripted information session to introduce the sampled farmers to LLL. Next, 

a survey was conducted that featured questions about network connections within the 

village and with farmers in the paired village (2-3 in the figure). We then conducted an 

experimental auction to elicit farmers’ demand for the technology (4). After conducting 

                                                           
4 Only three sources of LLL demonstrations were identified in EUP: sites selected by the Cereal Systems 
Initiative for South Asia (CSISA), of which this study is a part; the Krishi Vigyan Kendra (KVK) center in 
Kushinagar, a unit of the Indian Council for Agricultural Research that is responsible for technology 
promotion among farmers; and one private service provider who borrowed a CSISA LLL unit, provided 
custom hire services, and worked in partnership with the project. 
5 We believe that the single instance of a farmer reporting to have used LLL is an instance of misreporting 
or enumerator error. 
6 We find that very few sample farmers discuss agriculture with farmers in the paired village. 
7 The intended sample size for each villages was 24, with an additional 12 replacement farmers pre-selected 
in case of absenteeism or lack of a big enough plot among the original 24 farmers. 



the auction, we used a simple lottery to determine who in the pool of would-be adopters 

would actually purchase LLL services (5). We hired two LLL teams to provide leveling 

services to the farmers who won the lottery (6). During the rice and wheat growing 

seasons we used an intra-seasonal survey conducted every three weeks to collected 

detailed input use data (7). At the end of these two growing seasons, we conducted an 

endline survey and a second LLL auction (8 and 9) and then hired two LLL teams again 

to provide leveling services (10).  

3.2.1 Information session 

To begin our study we needed to introduce farmers to LLL. To this we held a scripted 

information session in each village, and ensured the sessions were as consistent as 

possible across villages. The information session lasted approximately one hour, and 

included a talk by a lead member of the enumeration team; a video showing a laser land 

leveler operating on a field, an interview with the service provider, and an interview with 

the farmer receiving the service; and a live question-and-answer session with a 

progressive farmer from EUP who received LLL services as part of a demonstration.8 At 

the conclusion of the information sessions, the team gave pictorial brochures about LLL 

to the farmers that contained the range of possible bids they could make in the 

experimental auction. During the information session, the team photographed all sample 

farmers and compiled a farmer photo directory for each village to be used later to help 

identify network links. 

Naturally, farmers at each information session inquired about the cost of LLL 

services. Because the information session was designed as precursor to an experimental 

                                                           
8 The lead enumerator was one of two, and the progressive farmer was the same for all information 
sessions. 



auction (explained in further detail below), the enumeration team answered questions in a 

consistent manner and in a way designed to prevent participants from anchoring on a 

specific price when it came time for auction bidding. Specifically, the enumeration team 

explained that in recent years in different states where LLL services were being provided, 

the price had ranged from Rs. 400 to Rs. 800 per hour of LLL service.9 

3.2.2 Survey and social networks  

Next, the team conducted baseline surveys with sample farmers to collect information on 

farm and household characteristics. The baseline survey included a social networks 

module that used the photo directories to help farmers identify their network contacts. For 

the networks module, enumerators asked farmers about their connections with all study 

farmers in their village, and the paired village. Each farmer was shown a composite 

picture containing photos of the other sampled farmers in their village. They were asked 

to identify themselves in the picture and then answer a series of yes or no questions about 

their relationships with the other farmers in the picture, e.g.: are any of these farmers their 

friends? Are any in their family? With which of these farmers do they discuss 

agriculture? Farmers were also asked to identify the progressive farmers in the photo. The 

same exercise was then conducted using a composite picture of photos of sample farmers 

in the paired village.  

With our social networks elicitation module in mind, it is useful to provide a 

broader description of relevant methodological dimensions to social network analysis. 

Prior social network studies have used a variety of definitions of social networks. In some 

cases, farmers’ social networks have been defined as the entire village (Besley and Case, 

                                                           
9 LLL custom hire, as well as most custom hire services, are priced by hour rather than by acre in India. We 
see no evidence of anchoring to Rs. 400 per hour in the auction results (Figure 2). 



1994, Foster and Rosenzweig, 1995, Munshi, 2004). While using the village as the 

relevant social network certainly captures many if not all of a farmer’s contacts, it also 

captures many that are not in the farmer’s network (Babcock and Hartman, 2010, 

Maertens and Barrett, 2012). Although farmers in these village settings may know 

everyone else in their village, the degree to which they share agricultural information, or 

even know what techniques other farmers use, is questionable.10 In some cases it is 

possible to use observable variables from existing survey data, such as caste, gender, age, 

wealth, literacy, or religion to refine what farmers’ social networks are likely to be 

(Munshi and Myaux, 2006). This method relies on strong assumptions regarding social 

interactions, and may not be appropriate in many cases. For instance, we find that farmers 

in our sample have agricultural contracts in different wealth and education classes, castes, 

and age groups.  

Many recent network studies have elicited farmer network links directly. In some 

cases survey respondents are asked about their social networks in an open-ended manner, 

i.e., allowing the respondent to list any farmers they know, trust, communicate with, or 

exchange information with (Bandiera and Rasul, 2006, Cai, 2013, Duflo, et al., 2006, 

Kremer and Miguel, 2007). The advantage of this approach is that it helps define the 

social network in a more complete manner by allowing farmers to list contacts who might 

be outside the sample. A disadvantage is that the analyst may not have information about 

the farmers’ network contacts, requiring them to either expand the sample (Duflo, 

Kremer, and Robinson 2006) or gather information about network contacts from the 

original sample farmer (Bandiera and Rasul 2006), which may be prone to error. In other 

                                                           
10 Conley and Udry (2010) find that Ghanaian farmers counted 29 percent of their village as agricultural 
contacts. Bandiera and Rasul (2006) find that farmers in Northern Mozambique count less than 5% of 
sunflower adopters in their village as friends or family.  



cases, farmers are asked to identify their network contacts from a partial or full list of 

other sample farmers (Conley and Udry, 2010, Maertens, 2012, McNiven and Gilligan, 

2012). 

There are many ways in which a network connection can be defined. A 

connection can be unidirectional (A claims B as a connection or B claims A as a 

connection) or bidirectional (A claims B as a friend and B claims A as a connection). 

Connections can be defined as one-dimensional and dichotomous (A and B are connected 

or they are not) or multi-dimensional and continuous (a social distance measure is 

composed from different measures of social connectivity, for example, level of trust, 

duration, and geographic proximity). One-dimensional measures used in the literature 

include friend or family (Bandiera and Rasul, 2006, Kremer and Miguel, 2007), 

information contact or information neighbor (Cai, 2013, Conley and Udry, 2010, Duflo, 

et al., 2006, McNiven and Gilligan, 2012), and geographic neighbor (Duflo, et al., 2006). 

Because our study centers on the adoption of an agricultural technology we use 

agricultural contacts to define social networks. For our analysis we use unidirectional 

links where A claims B as a network contact (whether or not B claims A) because 

information is more likely to flow from the farmer claimed as an agricultural contact to 

the farmer claiming him rather than in the opposite direction.  

Each farmer could identify any other farmer in his village, or the paired village, as 

a network contact, although contacts in paired villages were practically non-existent. In 

the full sample, farmers identified one agricultural contact in their village on average, and 

55% percent of the sample identified at least one agricultural contact. The maximum 

number of agricultural contacts was nine. In the subsample used to identify network 



effects farmers identified two agricultural contacts, 1.4 of which are would-be adopters of 

LLL and 0.7 of which are actual adopters. We explain how and why this subsample was 

constructed in Section 4. 

3.2.3 Experimental Auction and Lottery 

Several days after the information session and baseline survey, the enumeration team 

gathered all of the sample farmers in a given village to conduct an experimental auction 

to elicit their demand for LLL. We used a modified Becker-deGroote-Marchak style 

auction (Becker, et al., 1964), in which farmers were asked, in secrecy and plot by plot, a 

series of yes/no questions of the type, “would you pay Rs. X per hour to have this plot 

laser-leveled?” for increasing values of X. Possible values were Rs. 0, 250, 300, 350, 

400, 450, 500, 550, 600, 700, and 800 per hour. When a farmer said he would not pay Rs. 

X, the facilitating enumerator would move to the next plot. The maximum value at which 

the farmer agreed he would pay for LLL services is the maximum WTP for that plot, and 

the maximum WTP for all of a farmer’s plots is considered his overall maximum WTP 

for LLL custom hire services.  

Just before the final price was drawn, the lead enumerator informed all 

participants that because of capacity constraints, we would likely not be able to provide 

LLL services to all auction winners. Consequently, we would use a random public lottery 

immediately following the auction to determine who would actually pay for and receive 

LLL custom hire services. We informed farmers that we would hold a second auction one 

year later without a lottery because we would have more capacity at that point. Farmers 

were very understanding of process and accepted the lottery without issue. To ensure that 

the majority of farmers would enter the lottery, in each village Rs. 250 was drawn as the 



purchase price.11 Around two-thirds of all farmers won the auction and therefore entered 

the lottery. We stratified all farmers with WTP ≥ Rs.250 by their maximum WTP before 

randomly selecting half of the farmers in each stratum in order to increase variation 

among those actually receiving LLL services.  

The auction/lottery mechanism resulted in the following trifurcation of 

participants: auction losers, auction winners/lottery losers, and lottery winners. We define 

auction winners/lottery losers and lottery losers as would-be adopters and lottery winners 

as (first-generation) adopters. Because of self-selection, we expect auction losers (non-

adopters) to systematically differ from auction winners (would-be adopters), and this is 

indeed the case. Auction winners have 20% more years of schooling, 60% greater 

landholdings, and are generally wealthier (as measured by a factor analytic wealth index). 

Because auction winners are split into lottery winners and losers at random there should 

no systematic difference between the two groups, and we find this to be true (table 1). 

 Because farmers with similar traits may also be network contacts, the number of 

would-be first-generation adopters in each farmer’s network is likely endogenous and 

correlated to characteristics that might influence demand for LLL (e.g., education, 

wealth, progressiveness). Because we randomize adoption among would-be adopters, the 

number of actual first-generation adopters in each farmers network is exogenous, 

conditional on the number of would-be adopters. This exogenous allocation of adopters 

into farmers’ networks allows us to circumvent the reflection problem and identify 

network effects, similarly to Oster and Thornton (2011) and Kremer and Miguel (2007). 

                                                           
11 Although the price was pre-selected by the enumeration team to be Rs.250, this price was unknown and 
effectively random to participants. In one village Rs. 300 was selected and in another village Rs. 350 was 
selected, before it became clear a lower price was needed to bring enough farmers into the lottery.  
Subsequently Rs. 250 was selected in all other village. This difference should not change auction results in 
either year.  



Among farmers with at least one would-be adopter in their network, we find no 

significant difference in age, education, land area, wealth, or WTP in the first auction 

(table 2) between farmers with and without a first-generation adopter in their network 

using a simple t-test. Note that here we do not control for total number of would-be 

adopters in each farmer’s network beyond limiting the comparisons to farmers with at 

least one would-be adopter. In our regression analysis to follow, we can explicitly control 

for number of would-be adopters. 

3.3.4 Technology delivery, input-use surveys, and follow-up auction 

The lottery winners were required to pay for and receive LLL services at the drawn price 

at a mutually agreed upon date during the months that immediately followed the auction. 

The timing of the auction was such that the LLL custom hire services would be provided 

to lottery winners during the 100-day fallow season between the kharif (summer) rice 

season and the rabi (winter) wheat seasons, which is effectively the only time farmers 

have to receive such services. Service provision during this time was carefully monitored 

to ensure that farmers had no other access to LLL services, e.g., through side-selling by 

the service provider or by other projects operating in EUP. After the first-generation 

adopters received LLL custom hire services the enumeration team conducted regular 

surveys at two to three week intervals throughout the rabi and kharif seasons. We use 

data on irrigation rates to separate out farmers that benefited more from LLL from those 

who benefited less, which allows us to identify social learning about the benefits of LLL. 

This is for two reasons. First, irrigation savings is the primary purported benefit of LLL. 

Second, irrigation rates are highly visible in farmers’ fields, even after pumps are 

operating. We find that LLL adopters had irrigation rates 20% lower than would-be 



adopters who lost the lottery (p<0.1).12 These water-use savings are similar to those 

found in agronomic trials, which is an encouraging sign that the technology is beneficial 

to smallholders like the ones in our sample.  

In Spring 2012 we collected demand data using a second auction identical in 

structure to the first, but without a lottery so all farmers who bid high enough would 

receive LLL custom hire services. For the purposes of this study, using WTP data from 

an experimental auction as an outcome variable instead of binary adoption data has 

several advantages. First, it allows us to measure network effects on demand in money 

terms. Second, it allows us to capture changes in demand that do not push a farmer across 

an adoption threshold, i.e., an increase in demand for farmers who would not adopt (at 

some price) before or after one year of exposure, or for farmers who would adopt before 

and after one year of exposure (at some price). To demonstrate this point, we include 

regressions using a constructed binary adoption variable with our results. 

 A comparison between the 2011 and 2012 auctions show that overall WTP 

increased over the course of the study. This was expected, as many farmers initially said 

they would only adopt LLL once they saw it with their own eyes. Mean WTP for LLL in 

the baseline (2011) auction was Rs. 204 per hour and, among those with WTP>0, Rs. 322 

per hour. In the follow-up (2012) auction mean WTP was Rs. 310 and Rs. 382 per hour, 

respectively. These differences in means are both significant at the 0.01 confidence level 

using a t-test. Figure 2 presents histograms of bids across the two auctions. It is worth 

noting that in 2012 there was no clustering around Rs. 250, the price drawn in the 2011 

auction. This suggests that farmers were consistently bidding their individual WTP rather 

than anchoring around some price expectation based on the prior year’s draw price. 
                                                           
12 Regression results for water-use savings due to LLL are available from the authors upon request. 



Importantly, this also suggests that the auction was well understood by the participants. 

We cannot, however, assume that the increase in demand between the two years was 

because of spillovers or network effects. A number of factors could lead to changes in 

demand from one year to another. In the next section we discuss how we identified 

network effects using our experimental data. 

4             ESTIMATION OF NETWORK EFFECTS 

In our analysis of social network effects, we assume a given farmer receives an LLL 

social network ‘treatment’ if he has at least one first-generation adopter (lottery winner) 

in his social network. The probability of having an adopter in the farmer’s network is 

dependent on the number of would-be adopters in his network (auction winners), which 

could be correlated to unobservable characteristics of the farmer himself that also 

influence adoption. While this implies that we face a version of the reflection problem, 

we have a means of controlling for this problem by including the number of would-be 

adopters in the farmer’s network in our estimation model, which we observe in this study 

by design. This approach is similar to that used by Miguel and Kremer (2007) and Oster 

and Thornton (2012). The econometric model for estimating network effects is therefore:  

 𝑦𝑖 =  𝛼 + 𝛽1 ∙ 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 +  𝛽2 ∙ 𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑖 + 𝛽3 ∙ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒𝑖 + 𝜀𝑖 (1) 

In (1), 𝑦𝑖 is the outcome variable of interest. In the subsections to follow 𝑦𝑖 will take on 

the value of various exposure variables, willingness to pay for LLL, and adoption of LLL 

at different prices. The variable 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 indicates the presence of a first generation 

adopter in farmer i’s network. The variable 𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑖 is the number of would-be adopters 

in i’s network, and 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒𝑖 is the total number of farmers in i’s network, which 



can be added to improve precision, and 𝜀𝑖 is an error term.  The parameter 𝛽1 is the 

network effect on demand.  

The variable 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 can be either continuous (number of in-network adopters, 

proportion of adopting in-network adopters) or binary (presence of at least one adopter). 

In our data there is very little difference between treating 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 as continuous or 

binary because only 4 percent of farmers have more than one first generation adopter in 

their network. In our analysis we use three different specifications of 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖: having at 

least one in-network adopter, the number of in-network adopters (which ranges from one 

to three), and the proportion of qualifying in-network farmers who adopted (which is 

either 0, 0.33, 0.5, 0.67, or 1). The results are very robust across specifications, so we 

focus on the impact of having at least one adopter in-network. This is mainly to facilitate 

interpretation, but also because of the possibility of quickly decreasing marginal effects 

of additional in-network adopters. While the existence of decreasing marginal effects is 

ultimately an empirical question, it is one we cannot answer with our data; the continuous 

variable for number of adopting network contacts and the dichotomous variable for 

having at least one are 92% correlated, so we are unable to use both as explanatory 

variables as others have (McNiven and Gilligan, 2012).   

Around 10% of the farmers who won the adoption lottery were not able to receive 

LLL, mainly due to heavy rains that prevented the machinery from being able to operate 

in some areas. We therefore instrument for a farmer having his fields leveled with him 

winning the lottery, which we know to be exogenous. 

4.1 Exposure to LLL 



There are several ways a farmer might gain exposure to, and potentially learn about, a 

new technology through their network contacts. Here we estimate network effects on the 

probability that a farmer discusses LLL with an adopting farmer, the probability that they 

see a laser land leveling unit in operation on an adopting farmer’s fields, and the 

probability that they visit an adopting farmer’s laser leveled field.  For all of these 

outcomes, we capture interactions with all farmers in the village and paired village, not 

only in-network farmers. These interactions were common; 59% of farmers without an 

adopter in their network discussed LLL with an adopting farmer, 56% saw the LLL unit 

operate, and 44% visited an adopting farmer’s field after leveling.  

 We find some evidence that having in-network first-generation adopters increases 

the probability a farmer will have a conversation with another farmer about LLL. A 

farmer with at least one in-network adopter is 18% more likely to discuss LLL with an 

adopting farmer than a farmer without an in-network adopter (table 3, columns 1-3). 

Having in-network adopter increases the probability a farmer visits a laser land leveled 

field by 33% (table 3, columns 4-6). We find no evidence that having an in-network 

farmer increases the probability a farmer would see the leveler in operation (table 3, 

columns 7-9). This is likely because the operation of the leveler was a very public event, 

so interested farmers were able to watch the leveler in action whether or not the adopting 

farmer was in their network of agricultural contacts.   

  

4.2 Demand for LLL   

While it is encouraging that farmers gain exposure to a new technology through their 

network contacts, ultimately we are interested in if such exposure leads to increased 



demand for the technology. The majority of studies on network effects on technology 

demand observe demand as a dichotomous adoption variable. Cai (2013), who examines 

network effects on demand for agricultural insurance in China by offering farmers 

policies at different premiums, is a notable exception. Another exception is Oster and 

Thornton (2012), who use hypothetical bids to estimate peer effects on demand for 

menstrual cups in Nepal. To estimate the impact of having an adopter in one’s social 

network on demand, we use WTP in the second auction, a continuous measure of 

demand, as our dependent variable in (1). In alternative specifications we use the change 

in demand between the 2011 and 2012 auctions.13 

 For the reasons discussed above we treat having at least one in-network adopting 

farmer as a dichotomous variable. Because laser land leveling lasts for several years, the 

service has characteristics of a durable good, namely that a farmer who just had a plot 

leveled is unlikely to have it leveled the following year, even at a low price. Therefore, 

the 39 farmers who had all of their plots leveled after the first auction and had no plots to 

bid on in the second year they were omitted from analysis.14  We also omit farmers 

without any would-be adopters in their social network, as these farmers have zero 

probability of having an adopter in their network. We are left with 145 farmers that fit 

                                                           
13 While we could potentially increase precision by focusing on changes in demand from when the 
technology was first introduced via auction, we note that WTP data from the first auction is much noisier 
(𝜎
𝜇

= 0.88) than WTP data from the second auction (𝜎
𝜇

= 0.59). This is not surprising, as farmers had a 

good deal more experience with the technology before the second auction. We therefore focus on results 
using WTP data from the 2012 auction. Results using the change in WTP as the dependent variable can be 
found in the appendix. 
14 Farmers chose the plots they wanted leveled most for the 2011 auction. If these plots were leveled after 

the auction and lottery, the farmer was left with plots he presumably had less desire to have leveled in 

2012. This could downwardly bias estimates of WTP in 2012 for these farmers. When we include only 

farmers who had no plots leveled in 2011 we find the same sized network effects. 

 



these criteria. Of those 145, 33 were first-generation adopters that had additional plots 

eligible for LLL in the second auction. We should mention that whereas we can only 

measure network effects on demand for these 145 farmers, we use data on network 

conductivity with all 478 farmers in our sample for our analysis. 

We find that farmers with at least one adopting farmer in their network were 

willing to pay an additional Rs. 88 per hour for LLL custom service hire than farmers 

without an adopting farmer in their network (p < 0.05). This amounts to 25 percent of 

average WTP in the second auction (table 4, column 1). The point estimate of the effect 

of having an in-network adopter on demand is slightly larger when we exclude first-

generation adopters’ bids from our analysis (Rs. 105, results not shown). When we use 

the total number of in-network adopters as the explanatory variable we find the network 

effect to be Rs. 55 per farmer (table 4, column 2). We do not, however, interpret this as a 

per in-network adopter effect; only 13 of the 145 farmers in the analysis have more than 

one adopting in-network farmer. We find similar estimates using the increase in WTP 

from the 2011 to the 2012 auction as the dependent variable, although with slightly less 

precision (table A1). In percentage terms, these network effects on demand are nearly 

twice as strong as those found by Oster and Thornton (2012) and Cai (2013) for 

menstrual cups and agricultural insurance, respectively.15 

 

4.3 Learning or mimicry?  

The fact that a farmer’s demand for an agricultural technology is influenced by the 

technology choices of those in his network does not necessarily imply social learning; 

                                                           
15 Oster and Thornton (2012) use a hypothetical auction with a similar bidding mechanism to ours. Cai 
(2013) randomly varies the price of the insurance premium offered to farmers.  



network effects could also arise because of mimicry, or herd behavior (Banerjee, 1992). 

Mimicry can either arise out of a desire to conform, or because the follower assumes the 

leader has good information, and has made a good technological decision. Distinguishing 

learning from mimicry is difficult. Furthermore, learning has two components: farmers 

can learn about the profitability of a technology, or how to use a technology. Conley and 

Udry (2010) identify learning how to use a technology by looking at changes Ghanaian 

pineapple farmers make to fertilizer use over time that result from the good and bad 

experiences of their network contacts. Oster and Thornton (2012) distinguish learning 

about how to use a technology from mimicry by separately looking at Nepali girls’ 

attempted use of menstrual cups from their successful and sustained use of menstrual 

cups. The technology in this study is obtained through custom hire, so farmers can 

potentially learn about its profitability, but not how to better use the technology. It is 

conceivable, however, that farmers can learn about how to adjust input use for a laser-

leveled field. Testing for learning about input use on laser-leveled fields is a potential 

way to expand this research. 

We distinguish learning from mimicry by not only looking at the impact of having 

adopters in one’s network, but also the benefits achieved by those adopters in terms of 

water use reduction. Borrowing from the methodology of Conley and Udry (2010), we 

divide first-generation adopters into low and high water use farmers. We define a low 

water use farmer as one who had an irrigation rate lower than the median rate for his 

village and a high water use farmer as one who had an irrigation rate higher than the 

median rate. This distinction is not completely analogous to distinguishing farmers who 

save water because of LLL from farmers who does not, which would be ideal. Because 



we do not have baseline data on water use, we cannot create such a variable. While many 

factors could contribute to a farmer using more or less water than the that the district 

median, our empirical specification isolates the effect of laser land leveling on the water 

use of in-network adopters by accounting for the water use of in-network would be 

adopters.  Specifically, we control for the number of high water use would-be adopters 

and the number of low water use would-be adopters separately, rather than controlling for 

the total number of would-be adopters as we do in (1). The empirical model to test for 

learning about benefits is: 

𝑊𝑇𝑃𝑖 =  𝛼 +  𝛽1 ∙ 𝑎𝑑𝑜𝑝𝑡𝑖𝑛𝑔𝑖  ×  𝑙𝑜𝑤 𝑖𝑟𝑟𝑖𝑔𝑖 +  𝛽2𝑎𝑑𝑜𝑝𝑡𝑖𝑛𝑔𝑖  ×  ℎ𝑖𝑔ℎ 𝑖𝑟𝑟𝑖𝑔𝑖 + 𝛽3

∙ 𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑖  ×  𝑙𝑜𝑤 𝑖𝑟𝑟𝑖𝑔𝑖 +  𝛽4 ∙ 𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑖  ×  ℎ𝑖𝑔ℎ 𝑖𝑟𝑟𝑖𝑔 𝑖 + 𝛽5

∙ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒𝑖 + 𝜀𝑖. 

(2) 

If mimicry drives demand we would expect 𝛽1 and 𝛽2 to both be positive and be 

equal to each other. If learning drives demand we would expect 𝛽1 to be positive and 𝛽2 

to be zero or negative. If there are no network effects, either via mimicry or learning, we 

would expect 𝛽1 and 𝛽2 to both be zero. We find that having a water-saving adopting 

farmer in one’s network increases WTP by Rs. 93 (p<0.1). This amounts to 29% of mean 

WTP in the second auction. Having a non water-saving adopter in one’s network has no 

discernable effect on demand (table 5, column 1). This result is robust to using the 

proportion of in-network adopting farmers (table 5, column 2) and similar using the total 

number of in-network adopters (table 5, column 3), although not to the 0.1 confidence 

level. Point estimates are similar in specifications using difference in WTP from the 2011 

to 2012 auction as the explanatory variable, although much less precise (table A2). These 

results indicate that technological spillovers for LLL arise not only because of mimicry, 



but because farmers learn about the benefits of the technology through the network of 

agricultural contacts.  Whereas others have argued that network effects are more likely to 

drive adoption of hard to use technologies where learning about use is important (Oster 

and Thornton, 2012), here we find strong network effects on demand for an easy to use 

technology with uncertain (but visible) benefits.  

If network effects on technology demand are fueled by learning about benefits, it 

is important that early adopters of a technology do benefit, and that the benefits are made 

as visible as possible. Extension should therefore target farmers that stand to benefit, 

keeping in mind that they also may need to target farmers at different levels of wealth, 

education, and social status in order for technology to spread inclusively. Extension can 

work to increase visibility of benefits by encouraging farmers to keep logs of input use 

and other benefits that might be less easily visible than yields, and for extension to work 

with farmers to publicize these benefits, for instance by charting input use on roadside 

placards bordering fields.  

 

 

4.4 Zero test for spurious network effects  

While we are confident that our experimental set-up prevents us from finding network 

effects erroneously, we perform a test by regressing WTP from the 2011 auction, held 

before the technology was introduced, on the network variable in (1) and (2) above. If 

coefficients on network variables are positive in these specifications it would be an 

indication that unobservable variables correlated to both demand for the technology and 

the number of in-network first-generation adopters are correlated, leading us to over-



estimate network effects or find network effects where there should be none. As 

expected, we find no impact of adoption in farmers’ network on their WTP for LLL 

before the technology was introduced (table 6).  

 

4.5 Adoption of LLL at different prices 

There are several advantages to using WTP data from an experimental auction instead of 

observed adoption data (typically binary)16 to analyze network effects. First, we can 

monetize network effects. Estimates of increases in demand due to network effects can 

help inform dynamic pricing strategies for firms that may want to bring a technology to a 

new and uncertain market, as is the case with LLL in EUP. Second, with auction data we 

can see changes in demand that may not otherwise be visible. For instance, if a farmer 

has WTP of Rs. 350 before his neighbor adopts a technology and Rs. 450 after his 

neighbor adopts the technology, the analyst would be able to see these network effects if 

the price of the technology does not exceed Rs. 450. 

 To illustrate this point with our data we construct a set of dichotomous adoption 

variables for WTP ≥ Price at various prices: Rs. 250, 300, 350, 400, 500, and 600. The 

model in (1) is modified to have a dichotomous adoption outcome as the dependent 

variable: 

 𝐴𝑑𝑜𝑝𝑡𝑖|𝑃𝑟𝑖𝑐𝑒 =  𝛼 + 𝛽1 ∙ 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 +  𝛽2 ∙ 𝑤𝑜𝑢𝑙𝑑𝑏𝑒𝑖 + 𝛽3

∙ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠𝑖𝑧𝑒𝑖 + 𝜀𝑖 

(2) 

Having an adopter in a farmer’s network increases his probability of adoption at from 8-

28% depending on the threshold, but the effect is only statistically significant at 0.1 

confidence or less at the Rs. 350 threshold (table 5). For any price other than Rs. 350, we 
                                                           
16 Adoption data can also be continuous, i.e. amount of land, or duration, i.e. time until adoption. 



would not be able to detect network effects that we see clearly using our WTP data (table 

7). In the specification with the number of adopters as the 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 variable, network 

effects are only significantly different from zero at the Rs. 250 threshold (table A3). In 

the specification with the proportion of adopters as the 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑖 variable, network 

effects are only significant at the Rs. 250 and Rs. 350 threshold (table A4).  

In areas of the IGP where LLL markets exist, the price in recent years has been 

between Rs. 500-600 per hour. If LLL was available at these prices in 2012, and we used 

market outcomes rather than auction outcomes, we would find point estimates are on the 

order of 8-10%, all of which are not statistically significant. Network effects on 

constructed adoption variables can be found in table 3. In a static situation, the market 

price of a technology is ultimately the relevant price for analyzing network effects on 

adoption. However, if network effects increase demand over several seasons, or if the 

market price of a technology stands to decrease as costs decrease or the market thickens, 

then detecting network effects on demand below the market price may be important.  

 

5 CONCLUDING REMARKS AND NEXT STEPS 

Improvements in agricultural technology that increase agricultural production and 

profitability can lead to improvements in the livelihoods and food security for the rural 

poor. But the dissemination of promising technologies can prove difficult in developing 

countries, where reaching many small and often isolated farmers directly with 

agricultural extension is prohibitively costly. Extension therefore operates under the 

assumption that technology disseminated to a small set of farmers— typically progressive 

farmers— will result in other farmers learning about the benefits of the technology and 



eventually adopt if they think the technology will benefit them. Empirical evidence of the 

efficacy of farmer networks at disseminating technology, however, is lacking. In part, the 

paucity of evidence is because identification of network effects is so challenging; 

specifically, it is difficult to tell if farmers use the same technologies as others in their 

network because they learn from or mimic each other, or because they share similar 

characteristics and circumstances. In this study we use a set of experimental auctions 

coupled with a randomized technology intervention to asses if having first generation 

adopters of a new resource conserving technology— laser land leveling— in a farmer’s 

network increases his exposure to, and demand for, the technology.  

 We find that farmers with at least one first-generation adopter in their network are 

willing to pay 25% more for laser land leveling than are comparable farmers without a 

first-generation adopter in their network. The figure is even greater when we only include 

farmers who have not do not have any first-hand experience with the technology. When 

we separate the effect of having a first-generation adopter that benefited more from LLL 

from the effect of having a first-generation adopter that benefited less, we find only a 

first-generation adopter who benefited more increased demand.  This finding suggests 

that actual learning, as opposed to mimicry, drives network effects in our sample.  

As a methodological contribution, this study demonstrates the benefits of using an 

experimental auction to measure demand rather than using dichotomous adoption data. 

Using willingness to pay data from an auction held one year after first-generation 

adopters, we can estimate increases in demand due to network effects in monetary terms. 

This approach has two distinct advantages over using dichotomous adoption choice data. 

First, our estimates can better be used to inform the design of dynamic pricing strategies 



for new technologies. Second, we can see network effects that otherwise would be 

invisible. In our data network effects are substantial, but not necessarily large enough to 

push farmers’ demand beyond the market price for the technology.      

 Large network effects like the ones we find in this study bode well for the current 

extension strategy of reaching out to progressive farmers with a technology and letting it 

diffuse through social networks. However, the reach of these networks may be very 

limited. For instance, we find that farmers have a very small probability of knowing a 

randomly selected farmer in a village only 5 km away. It is also unclear what types of 

farmers are the best conduits for the broad and inclusionary spread of a technology. For 

instance, poorer and less educated farmers might not think a technology suitable for a 

wealthier and more educated farmer is appropriate for them. As a next step in this 

research we will examine the heterogeneity of agricultural networks and the strength of 

network effects across different demographic lines.  
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Figure 1. Project timeline 

 

 

Figure 2. Frequency of bids for LLL custom hire in 2011 and 2012 auctions 
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Table 1. Demographic differences between auction winners (would-be adopters) and 
losers (left two columns) and lottery winners and losers (right two columns) 
 Auction Lottery  

(would-be adopters only) 
 

Losers 
Winners 

(would-be adopters) Losers Winners 
Age (years) 48.01 

(1.10) 
48.74 
(0.94) 

48.63  
(1.35) 

48.84 
(1.32) 

Education (years) 5.69 
(0.38) 

6.93 
(0.33)** 

6.87 
(0.46) 

7.00 
(0.48) 

Total land (acres) 1.41 
(0.27) 

2.29 
(0.23)** 

2.23 
(0.34) 

2.35  
(0.31) 

Wealth index -0.162 
(0.045) 

0.106 
(0.068)*** 

0.098 
(0.088) 

0.113 
(0.105) 

Observations 192 286 142 144 
Notes: Standard errors in parentheses, ***, **, * denote p<0.01, p<0.05, and p<0.1 for 
significance of t-test for differences between auction winners and losers and between 
lottery winners and losers. Wealth index consists of credit access, livestock, Diwali or Eid 
El Khabir spending, house condition, and public works (MNREGA) participation.  
  

 

 

 

 

 

Table 2. Demographic and WTP (2011 auction) differences between 
those with an auction winner in their network and those without 
(conditional on having at least one would-be adopter in their network). 
 No lottery 

winner in 
network 

Lottery winner in 
network 

P-value for 
difference 

Age (years) 48.26 
(1.94) 

49.80 
(1.62) 

0.54 

Education (years) 7.46  
(0.65) 

6.78 
(0.56) 

0.44 

Total land (acres) 1.93 
(0.32) 

2.78 
(0.51) 

0.20 

Wealth index 0.23 
(0.13) 

0.14 
(0.14) 

0.67 

WTP (2011 auction) 225 
(22.6) 

253 
(17.9) 

0.32 

Observations   69 95  
Notes: Standard errors in parentheses. Wealth index consists of credit 
access, livestock, Diwali or Eid El Khabir spending, house condition, and 
public works (MNREGA) participation.  



Table 3. Network effects on exposure to LLL  

Exposure to LLL 
through… 

…at least one conversation with 
adopting farmer about LLL 

…seeing LLL unit operate on at least 
one adopting farmer’s field 

…visiting at least adopting farmer’s 
field after leveling 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
At least one 
adopter in 
network  

0.18   0.03   0.33***   

(0.11)   (0.11)   (0.11)   
# of adopters in 
network  

 0.10   0.06   0.14  
 (0.08)   (0.09)   (0.09)  

Prop. of adopters 
in network  

  0.15   0.09   0.31*** 
  (0.11)   (0.12)   (0.11) 

# of would-be 
adopters 

-0.07 -0.08 -0.03 0.02 -0.00 0.02 -0.11 -0.10 -0.04 
(0.10) (0.10) (0.09) (0.10) (0.11) (0.10) (0.10) (0.10) (0.09) 

Total network size 0.02 0.01 0.02 0.03 0.03 0.03 0.06 0.05 0.05 
(0.04) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 

Constant 0.63*** 0.67*** 0.61*** 0.48*** 0.49*** 0.46*** 0.31*** 0.38*** 0.26*** 
(0.09) (0.10) (0.10) (0.10) (0.10) (0.10) (0.09) (0.10) (0.10) 

Observations 147 147 147 147 147 147 147 147 147 
IV linear probability models with lottery winning farmers instrumenting for farmers receiving leveling. Results are robust to IV probit specification. 
Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Only farmers with at least one qualifying farmer in their networks included in 
analysis. 
 



 
 
 

 
Table 4. Network effects on demand for LLL (WTP 2012)  

Dependent var:  
WTP 2012 (1) (2) (3) 
At least one adopter 
in network  

87.54**   
(42.32)   

# of adopters in 
network  

 55.62*  
 (32.44)  

Prop. of adopters in 
network  

  88.83** 
  (44.31) 

# of would-be 
adopters 

-33.28 -37.88 -14.76 
(38.26) (39.70) (36.90) 

Total network size 3.24 0.09 1.22 
(17.79) (17.93) (17.84) 

Constant 341.56*** 363.17*** 326.21*** 
(37.39) (37.63) (39.14) 

Observations 145 145 145 
IV regressions with lottery winning farmers instrumenting for farmers 
receiving leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * 
p<0.1. Only farmers with at least one qualifying farmer in their networks 
included in analysis. 
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Table 5. Learning about benefits and demand for LLL (WTP 2012)  

Dependent var:  
WTP 2012 (1) (2) (3) 
At least one adopter 
in network (low 
irrig) 

93.01*   
(55.31)  

 
At least one adopter 
in network (high 
irrig) 

16.48   
(59.27) 

  
# of adopters in 
network (low irrig) 

 85.74  
 (52.64)  

# of adopters in 
network (high irrig) 

 20.96  
 (51.46)  

Prop. of adopters in 
network (low irrig) 

  97.10* 
  (55.89) 

Prop. of adopters in 
network (high irrig) 

  6.98 
  (57.06) 

# of would-be 
adopters (low irrig) 

-71.01 -70.44* -58.19 
(48.56) (40.09) (45.13) 

# of would-be 
adopters (high irrig) 

-13.64 -14.46 -3.09 
(41.26) (36.71) (39.02) 

Total network size 3.74  1.56 
(17.98)  (18.00) 

Constant 367.00*** 373.15*** 359.58*** 
(38.66) (38.43) (38.98) 

Observations 145 145 145 
IV regressions with lottery winning farmers instrumenting for farmers 
receiving leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * 
p<0.1. Only farmers with at least one qualifying farmer in their networks 
included in analysis. 
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Table 6. Zero test for spurious network effects  
Dependent var: WTP 
2011 (1) (2) (3) (4) (5) (6) 
At least one adopter 
in network  

20.59      
(42.44)      

# of adopters in 
network  

 -17.09     
 (32.71)     

Prop. of adopters in 
network  

  -5.28    
  (44.62)    

At least one adopter 
in network (low irrig) 

   -14.50   
   (56.06)   

At least one adopter 
in network (high 
irrig) 

   -42.83   

   (60.08)   
# of adopters in 
network (low irrig) 

    3.67  
    (53.44)  

# of adopters in 
network (high irrig) 

    -40.72  
    (52.97)  

Prop. of adopters in 
network (low irrig) 

     -14.14 
     (56.60) 

Prop. of adopters in 
network (high irrig) 

     -67.20 
     (57.78) 

# of adopters in 
network 

29.33 42.05 34.37    
(38.37) (40.03) (37.16)    

# of adopters in 
network (low irrig) 

   26.67 21.98 20.22 
   (49.22) (49.47) (45.70) 

# of adopters in 
network (high irrig) 

   50.07 54.26 48.47 
   (41.82) (44.20) (39.51) 

Total network size 4.05 5.78 4.58 6.67 7.01 7.30 
(17.84) (18.08) (17.97) (18.23) (18.34) (18.23) 

Constant 175.20*** 173.93*** 179.03*** 183.14*** 179.16*** 191.06*** 
(37.50) (37.94) (39.41) (39.18) (39.19) (39.47) 

Observations 145 145 145 145 145 145 
IV regressions with lottery winning farmers instrumenting for farmers receiving leveling. Standard errors in 
parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Only farmers with at least one qualifying farmer in their networks 
included in analysis. 
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Table 7. Network effects on constructed dichotomous adoption variables (at least one 
in-network adopter) 

Dependent var: WTP 
> hypothetical price 

Rs. 
250 Rs. 300 Rs. 350 Rs. 400 Rs. 500 Rs. 600 

At least one 
adopter in network  

0.13 0.08 0.28** 0.07 0.10 0.08 
(0.08) (0.09) (0.11) (0.11) (0.09) (0.07) 

# of would-be 
adopters in 
network 

-0.03 -0.05 0.03 0.06 -0.08 -0.11* 

(0.07) (0.09) (0.10) (0.10) (0.08) (0.06) 
Total network size -0.01 0.02 -0.04 -0.01 0.03 0.05 

(0.03) (0.04) (0.05) (0.05) (0.04) (0.03) 
Constant 0.85*** 0.77*** 0.51*** 0.32*** 0.17** 0.13** 

(0.07) (0.08) (0.10) (0.10) (0.08) (0.06) 
Observations 145 145 145 145 145 145 
IV linear probability models with lottery winning farmers instrumenting for farmers receiving 
leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Results are robust to an IV 
probit specification. Only farmers with at least one qualifying farmer in their networks included in 
analysis. 
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Appendix: Alternate model specifications 

Table A1. Network effects on demand for LLL (WTP 2012 – WTP 2011)  

Dependent var:  
WTP 2012 –WTP 
2011 (1) (2) (3) 
At least one adopter 
in network  

66.95   
(51.35)   

# of adopters in 
network  

 72.71*  
 (39.19)  

Prop. of adopters in 
network  

  94.11* 
  (53.69) 

# of would-be 
adopters 

-62.60 -79.93* -49.12 
(46.42) (47.96) (44.71) 

Total network size -0.81 -5.69 -3.36 
(21.58) (21.66) (21.62) 

Constant 166.36*** 189.24*** 147.18*** 
(45.37) (45.45) (47.42) 

Observations 145 145 145 
IV regressions with lottery winning farmers instrumenting for farmers 
receiving leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * 
p<0.1. Only farmers with at least one qualifying farmer in their networks 
included in analysis. 
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Table A2. Learning about benefits and demand for LLL (WTP 2012 – WTP 2011)  

Dependent var:  
WTP 2012 – WTP 2011 (1) (2) (3) 
At least one adopter 
in network (low 
irrig) 

107.51   

(66.98)   
At least one adopter 
in network (high 
irrig) 

59.31   

(71.78)   
# of adopters in 
network (low irrig) 

 82.83  
 (63.64)  

# of adopters in 
network (high irrig) 

 58.85  
 (62.22)  

Prop. of adopters in 
network (low irrig) 

  111.24 
  (67.53) 

Prop. of adopters in 
network (high irrig) 

  74.18 
  (68.94) 

# of would-be 
adopters (low irrig) 

-97.67* -103.90** -78.41 
(58.80) (48.47) (54.52) 

# of would-be 
adopters (high irrig) 

-63.71 -78.03* -51.57 
(49.96) (44.38) (47.14) 

Total network size -2.93  -5.74 
(21.78)  (21.74) 

Constant 183.86*** 195.31*** 168.52*** 
(46.81) (46.45) (47.09) 

Observations 145 145 145 
IV regressions with lottery winning farmers instrumenting for farmers 
receiving leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * 
p<0.1. Only farmers with at least one qualifying farmer in their networks 
included in analysis. 
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Table A3. Network effects on constructed dichotomous adoption variables (total 
number of in-network adopters) 

Dependent var: WTP 
> hypothetical price 

Rs. 
250 Rs. 300 Rs. 350 Rs. 400 Rs. 500 Rs. 600 

# of adopters in 
network 

0.12* 0.06 0.13 0.01 0.04 0.03 
(0.06) (0.07) (0.09) (0.09) (0.07) (0.05) 

# of would-be 
adopters in 
network 

-0.05 -0.06 0.03 0.07 -0.07 -0.10 
(0.08) (0.09) (0.10) (0.11) (0.08) (0.07) 

Total network size -0.02 0.02 -0.05 -0.01 0.03 0.05 
(0.03) (0.04) (0.05) (0.05) (0.04) (0.03) 

Constant 0.89*** 0.79*** 0.57*** 0.33*** 0.19** 0.14** 
(0.07) (0.08) (0.10) (0.10) (0.08) (0.06) 

Observations 145 145 145 145 145 145 
IV linear probability models with lottery winning farmers instrumenting for farmers receiving 
leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Results are robust to an IV 
probit specification. Only farmers with at least one qualifying farmer in their networks included in 
analysis. 

 

 

Table A4. Network effects on constructed dichotomous adoption variables (proportion 
of in-network farmers adopting) 

Dependent var: WTP 
> hypothetical price 

Rs. 
250 Rs. 300 Rs. 350 Rs. 400 Rs. 500 Rs. 600 

Prop. of adopters in 
network 

0.16* 0.09 0.26** 0.06 0.08 0.06 
(0.09) (0.10) (0.12) (0.12) (0.09) (0.07) 

# of would-be 
adopters in 
network 

0.00 -0.03 0.09 0.08 -0.06 -0.09 
(0.07) (0.08) (0.10) (0.10) (0.08) (0.06) 

Total network size -0.01 0.02 -0.05 -0.01 0.03 0.05 
(0.03) (0.04) (0.05) (0.05) (0.04) (0.03) 

Constant 0.82*** 0.76*** 0.47*** 0.32*** 0.16* 0.12* 
(0.08) (0.09) (0.10) (0.10) (0.08) (0.07) 

Observations 145 145 145 145 145 145 
IV linear probability models with lottery winning farmers instrumenting for farmers receiving 
leveling. Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Results are robust to an IV 
probit specification. Only farmers with at least one qualifying farmer in their networks included in 
analysis. 

 


