
Sovereign Default, Exit and Contagion in a Monetary Union

Sylvester Eijffinger, Michal Kobielarz and Burak Uras (Tilburg University)

Belgian Macro Workshop Namur, 12th September 2017

Crisis and Contagion in the Eurozone

This paper

- A theoretical framework for analyzing two sovereign decisions:
 - default on external debt,
 - exit from a monetary union.
- Explain contagion within a monetary union:
 - risk of one country exiting triggers sovereign debt problems in other countries.

This paper - setup

- Small Open Economy dynamic macro model,
- SOE issues debt on international financial markets,
- SOE is a member of a monetary union.

- Government issues bonds on international financial markets,
- Each period decision whether to repay debt:

- Government issues bonds on international financial markets,
- Each period decision whether to repay debt:
 - repay it can issue new bonds,

- Government issues bonds on international financial markets,
- Each period decision whether to repay debt:
 - repay it can issue new bonds,
 - default cannot issue:
 - is banned from international financial markets.
 - suffers an output loss (default penalty).

- Government issues bonds on international financial markets,
- Each period decision whether to repay debt:
 - repay it can issue new bonds,
 - default cannot issue:
 - is banned from international financial markets.
 - suffers an output loss (default penalty).
- Government makes the optimal long-run decision, which depends on past debt and current conditions.

 There is a nominal friction (wage rigidity) - beneficial to devalue in recession,

- There is a nominal friction (wage rigidity) beneficial to devalue in recession,
- The country is a member of a MU \Rightarrow fixed exchange rate,

- There is a nominal friction (wage rigidity) beneficial to devalue in recession,
- The country is a member of a MU \Rightarrow fixed exchange rate,
- Government may exit the MU and devalue,
- but exit is costly, C.

- There is a nominal friction (wage rigidity) beneficial to devalue in recession,
- The country is a member of a MU \Rightarrow fixed exchange rate,
- Government may exit the MU and devalue,
- but exit is costly, C.
- Optimal decision: exit iff

Benefits > Cost

Exit cost & benefits

Exit benefits:

- relax nominal friction,
- debt reduction.

Exit cost & benefits

Exit benefits:

- relax nominal friction,
- debt reduction.

Exit cost in reality - examples:

- losses in trade and production,
- liquidity issues during transition, potential (domestic and international) bank runs,
- EMU vs EU membership.

Fxit cost & benefits

Exit benefits:

- relax nominal friction,
- debt reduction.

Exit cost in reality - examples:

- losses in trade and production,
- liquidity issues during transition, potential (domestic and international) bank runs,
- EMU vs EU membership.

Conclusion: exit cost is unknown!

- Cost of exiting are unknown, $C \in \{C^L, C^H\}$,
- First country exiting reveals the true exit cost,
- Exit decisions depend on information available:
 - With uncertainty \Rightarrow exit decision against expected cost C^e ,
 - After cost revealed \Rightarrow exit decision with true cost, C^L or C^H .

- Cost of exiting are unknown, $C \in \{C^L, C^H\}$,
- First country exiting reveals the true exit cost,
- Exit decisions depend on information available:
 - With uncertainty \Rightarrow exit decision against expected cost C^e ,
 - After cost revealed \Rightarrow exit decision with true cost, C^L or C^H ,
- Assumption:

$$C^{H} > C^{e} > Benefits > C^{L}$$

Rumors about a future exit (of Greece) influence today's interest rates (for Portugal):

• risk of Grexit \Rightarrow true C revealed before next period decisions,

- risk of Grexit \Rightarrow true C revealed before next period decisions,
- if $C = C^L$ Portugal might exit and devalue,

- risk of Grexit \Rightarrow true C revealed before next period decisions,
- if $C = C^L$ Portugal might exit and devalue,
- re-denomination + devaluation = partial default,

- risk of Grexit \Rightarrow true C revealed before next period decisions,
- if $C = C^L$ Portugal might exit and devalue,
- re-denomination + devaluation = partial default,
- investors price it in $(today) \Rightarrow increase$ in interest rates.

Model overview

SOE model a la Schmitt-Grohé & Uribe (JPE, 2016), Na et al. (2017):

- SOE issues bonds on international financial markets,
- may default on the debt,
- downward nominal wage rigidity,
- the rigidity may cause involuntary unemployment.

Model overview

SOE model a la Schmitt-Grohé & Uribe (JPE, 2016), Na et al. (2017):

- SOE issues bonds on international financial markets,
- may default on the debt,
- downward nominal wage rigidity,
- the rigidity may cause involuntary unemployment.

We extend the model with:

- SOE is member of a monetary union fixed exchange rate,
- possibility of (costly) exit from the union,
- exit allows devaluation and debt reduction.

Quantitative analysis

Benchmark analysis:

- Standard calibration Argentina, calibration
- Simulation: 1000 series x 5000 periods,
- 1 period = 1 quarter

Simulation results more switches

Expected	Fraction of simulation series			
exit cost	with regime switch			
	EXIT	DEFAULT		
0.7	99.7%	100%		
0.8	93.9%	100%		
1.1	33.0%	100%		
1.5	3.9%	100%		
1.9	0.1%	100%		
2.2	0.0%	100%		
2.3	0.0%	100%		

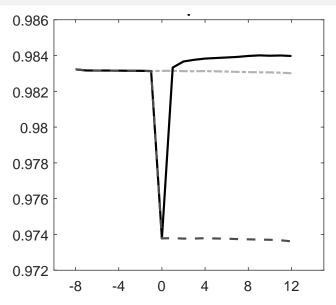
Quantitative analysis

Benchmark analysis:

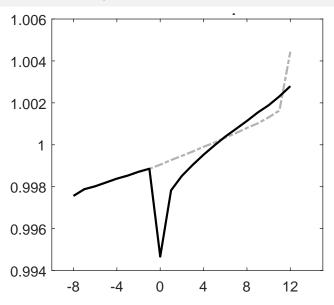
- Standard calibration Argentina, calibration
- Simulation: 1000 series × 5000 periods,

Contagion experiment:

- Take benchmark simulation periods without default/exit,
- Introduce a rumors shock probability that Greece exits before next period (information revelation),
- Compare with benchmark simulation.


Simulation results - Contagion more

Expe	erimen	t setup	Exit Prob. (%)	Additional data as % of no-defa		
Ce	C^L	C ^H		all periods	periods with positive debt	recessions
2.3	0.8	3.8	0	0.78	1.44	4.43


Simulation results - Contagion more

Experiment setup		Exit Prob. (%)	Additional defaults as % of no-default periods			
Ce	C^L	C ^H		all periods	periods with positive debt	recessions
2.3	0.8	3.8	0	0.78	1.44	4.43
Default multipliers:			:	$\frac{0.78+0.38}{0.38} =$ 3.05	$\frac{\frac{1.44+0.70}{0.70}}{3.05} =$	$\frac{4.43+1.00}{1.00} =$ 5.43

Simulations - bond prices

Simulations - consumption more

Conclusions

- Model explaining contagion in a monetary union,
- Rumors of a first exit cause debt problems in other countries,
- Information friction (uncertainty) generates fragility,
- · Limiting uncertainty limits space for contagion,
- but (potentially) at the cost of more exits.

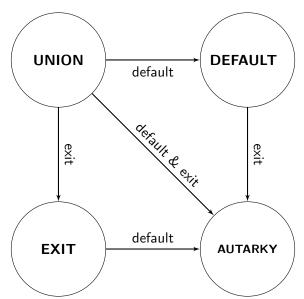
Appendix

Calibration back

Parameter	Value	Description
β	0.87	Quarterly discount factor
<i>r</i> *	0.01	Quarterly net world interest rate
γ	0.99	Degree of downward nominal wage rigidity
δ_1	-0.25	Parameters of the output loss function
δ_2	0.27	
C^L	8.0	Low exit cost
C^H	3.8	High exit cost
Ce	2.3	Expected cost of exit

Calibration (back)

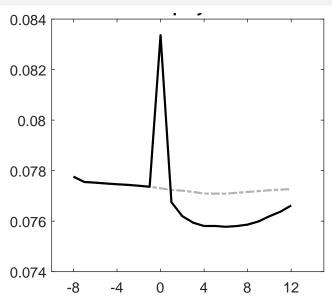
Parameter	Value	Description
σ	2	Inverse of intertemporal elasticity of consumption
а	0.28	Share of tradables
ε	0.44	Elasticity of substitution between T and NT
α	0.59	Labor share in the non-traded sector
ho	0.932	Serial correlation of $\ln y_t^T$
σ_y	0.037	Standard deviation of innovation to y_t^T


Benchmark simulation results (back)

Expected	Consumption	Fraction of simulations with regime switch		
exit cost	equivalent			
		EXIT	DEFAULT	
0.7	8.3%	99.7%	100%	
8.0	9.4%	93.9%	100%	
1.1	12.5%	33.0%	100%	
1.5	16.3%	3.9%	100%	
1.9	19.8%	0.1%	100%	
2.2	22.2%	0.0%	100%	
2.3	23.0%	0.0%	100%	

Benchmark simulation results (back)

Expected exit cost	First regime switch			
	EXIT	DEFAULT	BOTH	
0.7	66.2	33.2	0.6	
0.8	53.5	46.1	0.4	
1.1	22.8	77.1	0.1	
1.5	3.5	96.5	0	
1.9	0	100	0	
2.2	0	100	0	
2.3	0	100	0	


Regime switches in the model

Simulation results - Contagion back

Experiment setup		Exit Prob. (%)	Additional defaults as % of no-default periods			
C ^e	C^L	C ^H		all periods	periods with positive debt	recessions
2.3	8.0	3.8	0	0.78	1.44	4.43
2.3	0.7	3.9	0	1.20	2.21	6.20
2.3	1.1	3.5	0	0.42	0.78	1.92
2.3	1.9	2.7	0	0.25	0.46	0.38
1.5	0.7	2.3	0.00	0.75	1.38	5.06
1.5	8.0	2.2	0.00	0.43	0.79	4.08
1.5	1.1	1.9	0.00	0.16	0.30	1.52

Simulations - unemployment back

