
New Information Response Functions

and Applications to Monetary Policy

Caroline JARDET (1)

Banque de France
Alain MONFORT (2)

CREST, Banque de France
and Maastricht University

Fulvio PEGORARO(3)

Banque de France, CREST
and HEC Lausanne

First version : February, 2009. This version : October, 2011.

Abstract

We propose a new methodology for the analysis of impulse response functions in VAR
or VARMA models. More precisely, we build our results on the non ambiguous notion of
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on filters, or on future paths of variables of interest. We show, among other results, that
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orthogonalization of shocks (Sims (1980)), the ”structural” identification of shocks (Blanchard
and Quah (1989)), the ”generalized” impulse responses (Pesaran and Shin (1998)), or the
impulse vectors (Uhlig (2005)). Finally, working with a parsimonious Gaussian VAR(p) model
estimated on U.S. quarterly data, we exploit the NIRF methodology to address two monetary
policy issues. The first one concerns the shift (at the end of the 1970) to a more anti-inflationary
monetary policy, while the second one focuses on the effects on macro variables of the FOMC
stabilization announcement (at the end of 2008) of the future short rate around the zero lower
bound.
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1 Introduction

The pioneering paper by Sims (1980) has triggered a large literature on the definition of shocks and

impulse response functions in VAR, or VARMA models. A part of this literature is devoted to the

notion of orthogonalized shocks while another important one, initiated by Blanchard and Watson

(1986), Bernanke (1986) and Blanchard and Quah (1989), discusses the definition of “structural”

shocks. However, both approaches rely on ad-hoc assumptions, such as the ordering of the variable in

the VAR or expected effects that such shocks should have on a given variable. Unfortunately, these

hypotheses are not always consensual. This lack of general agreement leads to different response

functions which make difficult to bring out a clear economic message (see for instance Lütkepohl

(1991), Cochrane (1994)). Finally, in response to shortcomings of traditional orthogonalized and

structural approaches, a third part of the literature proposes a statistical or “agnostic” approach,

either in a bayesian way (Uhlig (2005)), or in a classical way (Pesaran and Shin (1998)).

In this paper we try to push as far as possible this statistical approach. The idea is to build our

results on the notion of innovation εt (say) of a stochastic process, that is, the difference between

the value of the process and its conditional expectation given its past. In contrast with “structural

shocks”, the statistical innovation is non ambiguous as it is defined in an unique way. Furthermore,

the idea is to exploit the fact that we sometimes have at our disposal an information set on this

innovation process which is larger, or smaller, than the simple information on the contemporaneous

realization of one of its component. For instance, this “new information” can be related to the

values, the signs, or more generally to a given possible interval, for one or several components of εt,

or to the value of one or several average responses. It can also be related to a linear filter of εt, or

even to the future path of some of its components. In this case, one may be interested in analysing

the expected dynamical effects of such a “new information” on variables of the model. Therefore in
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this paper we are interested in the responses to this notion of “new information”, and we develop a

general setting which is suitable to deal with these issues. This general methodology is named New

Information Response Function.

More formally, we start with the important case where the new information only concerns the

contemporaneous value εt of this innovation process, i.e. is of the form a(εt) = α, where a(.) is

some given function and α some given vector of real numbers. This general setting contains many

relevant particular cases. We first consider the “full new information” case where a(.) is one-to-one.

Here we have a unique value for the innovation and we show that the standard orthogonalized

shocks, the impulse vectors introduced by Uhlig (2005) and the structural shocks can be viewed as

particular cases of such full information. Second, we consider the case of “continuous limited new

information” where a(.) is not one-to-one and a(εt) has a continuous probability distribution. This

case includes the “generalized” impulse response function introduced by Pesaran and Shin (1998),

based on the information on one innovation, but it also allows to take into account many other

kinds of informations, including informations on several innovations and informations on responses.

Third, we study the “discrete limited new information” case where the new information is based on

discrete functions, like indicator functions and, in particular, sign functions, on either the innovation

itself, or on an impulse vector, or on a response. Fourth, this general setting is used to consider

new information on a linear filter of the vector of interest and responses of a linear filter.

Although the case where the new information only concerns the contemporaneous value εt of the

innovation process is the more frequent, we also consider other important cases. First, we study the

case where the information also depends on the observed past values Yt−1 = (Y ′
t−1, Y

′
t−2, . . .)

′ of the

process itself, that is the case where the new information can be written as a(εt, Yt−1) = α. Second,

we study the case where the new information also depends on future values of the innovation process

(or, equivalently, on future values of the process itself), and in this case the new information can

be written as a(εt:T , Yt−1) = α, where εt:T = (ε′t, ε
′
t+1, . . . , ε

′
T )′.

Finally, in order to provide an empirical illustration of the NIRF methodology we address two
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monetary issues using a Gaussian VAR(p) model that links macroeconomic variables and interest

rates. On the one hand, we test whether or not there is a shift toward a more aggressive anti-

inflationary monetary policy in the U.S. at the end of the 1970s. For that purpose, we analyse the

effects of a new information one the one-year ahead expected inflation, which can be expressed as

a linear filter on the variables in the VAR (namely, short rate, one-year spread, GDP growth and

inflation rate), before and after 1979:Q4. On the other hand, we investigate the effects on interest

rates and economic variables of the communication by the Federal Open Market Committee (FOMC)

in 2008:Q4, regarding the stability of future short term interest rate.

The paper is organized as follows. In Section 2 we define the new information response function.

In Section 3 this concept is applied to the full new information case. Section 4 is devoted to

the continuous limited new information case, while Section 5 deals with the discrete limited new

information one. In Section 6 we show how these results can be used to analyze shocks on a linear

filter and responses of a filter. Section 7 deals with path-dependent new information response

functions, while in Section 8 we present the empirical applications. Finally, Section 9 concludes and

proposes further developments, while Appendices gather Tables and further results.

2 Response to a new information on a function of a VAR

innovation

Let us consider a n-dimensional VAR(p) process Yt satisfying:

Φ(L)Yt = ν + εt , (1)

where Φ(L) = I +Φ1L+ ...+ΦpL
p, L being the lag operator; εt is the n-dimensional Gaussian inno-

vation process of Yt with distribution N(0, Σ). We do not necessarily assume that Yt is stationary,

so we have to assume some starting mechanism, defined by the initial values (y′
−1, y

′
−2, ..., y

′
−p)

′ ≡ y−p.
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By considering the recursive equations:

Yτ = ν − Φ1 Yτ−1 − . . . − Φp Yτ−p + ετ , (2)

at τ = 0, ..., t and eliminating Y0, ..., Yt−1 we get a moving average representation of the form:

Yt = µt +
t∑

τ=0

Θτεt−τ , (3)

where µt is a function of t and y−p and the sequence Θτ is such that:

[(
p∑

i=0

ΦiL
i

)(
t∑

τ=0

ΘτL
τ

)]

t

= I , (4)

(where [ � ]t is a notation for the polynomial obtained by retaining only the terms of degree smaller

than or equal to t from the polynomial between brackets) which implies,

Θ0 = I and

Θτ = −
τ∑

i=1

ΦiΘτ−i , τ ≥ 1 , (5)

with Θs = 0 if s < 0, Φ0 = I, Φi = 0 if i > p. Equation (5) provides a straightforward way to

compute recursively the matrices Θτ .

Denoting Yt = (Y ′
t , Y

′
t−1, ..., Y

′
t−p)

′, equation (3) implies:

E(Yt+h|Yt) − E(Yt+h|Yt−1) = Θhεt ; (6)

so Θhεt measures the differential impact of the knowledge of εt on the prediction updating of Yt+h

between dates t − 1 and t.

More generally, let us consider the differential impact on the prediction of Yt+h of a new information
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a(εt) = α, where a(.) is some function and α is given. Obvious examples of such functions are :

a(εt) = εt, a(εt) = b′εt, a(εt) = 1lR+(b′εt), where b is some vector, etc. This impact, also called new

information response function (NIRF), is by definition:

E(Yt+h|a(εt), Yt−1) − E(Yt+h|Yt−1) , (7)

and a key result is the equivalent representation of (7) by:

E
{
[E(Yt+h|εt, Yt−1) − E(Yt+h|Yt−1)]|a(εt), Yt−1

}
= E[Θhεt|a(εt), Yt−1]

= Θh E[εt|a(εt)] . (8)

Thus the average impact on Yt+h of the new information a(εt) at time t is the same as the one

which would be implied by the new information εt = δ with δ = E[εt | a(εt)]. Note that this impact

Θh δ can also be obtained from (2), with ν = 0, by computing recursively Yt, . . . , Yt+h, with Ys = 0,

s < t, εt = δ and εs = 0, s > t.

In Sections from 3 to 7 we will distinguish five important situations according to the properties

of function a(.):

i) the ”full new information” case, when a(.) is one-to-one.

ii) the ”continuous limited new information” case, when a(.) is not one-to-one and when the

probability distribution of a(εt) is continuous (i.e., absolutely continuous with respect to the

Lebesgue measure).

iii) the ”discrete limited new information” case, when the distribution of a(εt) has a discrete

component.

iv) the case of a new information on a linear filter Ỹt = F (L) Yt, with innovation ε̃t = F (0) εt,

defined by ã[F (0) εt] = α.
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v) the case of path-dependent new information in which a(εt, Yt−1) = α (”past path-dependent”

NIRF) or a(εt:T , Yt−1) = α, with εt:T = (ε′t, ε
′
t+1, . . . , ε

′
T )′ (”future path-dependent” NIRF).

3 Full new information

If a(.) is one-to-one, the average impact on Yt+h of the new information a(εt) = α is obviously

Θha
−1(α). This simple situation contains the following well known cases: 1) the orthogonalized

shocks; 2) the Uhlig (2005)’s impulse vectors and 3) the structural shocks.

3.1 Orthogonalized shocks

Let us consider the lower triangular matrix P defined by Σ = PP ′ and the orthogonalized errors

ξt defined by εt = Pξt. The distribution of ξt is obviously N(0, I) and it is usual to consider a

new information ej on ξt, where ej is the jth column of the n × n identity matrix I. Such a new

information is called a “shock” of 1 on ξjt or a “shock” of ej on ξt. It is clear that the impact on

Yt+h of such a shock is the same as the shock δ = Pej on εt, namely ΘhPej , or ΘhP
(j), where P (j)

is the jth column of P . In particular, the immediate impact on εt (or Yt) is P (j), so there is no

immediate impact on the component Yit if i < j, and the immediate impact on Yjt is Pjj (the (j, j)

entry of P ).

If we want an immediate impact on Yjt equal to one, we can consider the lower triangular matrix

P̃ = PD−1, where D is the diagonal matrix diag(Pjj), and the vector ζt defined by ζt = Dξt or

εt = P̃ ζt. Now, a shock ej on ζt has the impact δ = P̃ (j) on εt (or Yt) and ΘhP̃
(j) on Yt+h. Also

note that (1) can be rewritten:

P̃−1Φ(L)Yt = P̃−1ν + ζt (9)

and since P̃−1 is lower triangular with diagonal terms equal to 1, (9) is a recursive form of the

VAR. So the average impact on Yt+h of a shock ej on ζt, could be obtained from (9) with ν = 0, by
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computing recursively Yt, Yt+1, ..., Yt+h with Ys = 0, s < t, ζt = ej and ζs = 0, s > t.

3.2 Uhlig (2005)’s impulse vectors

Uhlig (2005) defined an impulse vector γ ∈ R
n as a vector such that there exists a matrix A verifying

AA′ = Σ and admitting γ as a column. The set of vectors satisfying this definition can be seen as

all the possible new informations on εt implied by a shock of 1 on a component of a ”fundamental”

error ηt satisfying εt = Aηt and V (ηt) = I.

It turns out [see Uhlig (2005)] that those vectors γ are characterized by γ = Pβ, where P is

defined in Section 3.1, and β is a unit length vector of R
n. Equivalently, these vectors belong to the

set Γ defined by γ′(P−1)′P−1γ = 1 or γ′Σ−1γ = 1 and therefore, they generate an hyperellipsöıd.

An impulse vector γ is a particular full new information on εt whose impact on Yt+h is Θhγ and

the set of all possible impacts on Yt+h coming from an impulse vector is ΘhPβ, where β is of length

one.

3.3 Structural shocks

A structural error is a vector ηt satisfying εt = Aηt, with Σ = AA′, and, therefore V (ηt) = I, like a

“fundamental” vector considered in Section 3.2. Moreover, a structural error is uniquely defined by

identification conditions which could be based on short run restrictions, imposing for instance that

a shock ej on ηt has no immediate impact on εit, i.e. Aij = 0, or which could be based on long-run

restrictions when Yt is non-stationary and admits r cointegrating relationships. In the latter case,

we can construct a vector Wt such that:

Wt =




∆Ỹt

Λ′Yt


 ,

where Ỹt is the subvector of Yt given by its first (n − r) rows (possibly after a reordering of the

components of Yt), and Λ′Yt a r-dimensional vector of cointegrating relationships, and such that Wt
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has a stationary VAR representation of the form:

Γ(L)Wt = Cν + Cεt

where C =




In−r 0

Λ′


 is invertible.

The long run impact on the scalar component yit, i ≤ n− r, of a shock ej on ηt is [Γ−1(1)CA(j)]i

where A(j) is the jth column of A, and imposing that such long run impacts are zero may imply

identification [see Blanchard and Quah (1993) and Rubio-Ramirez, Waggoner and Zha (2008)]. In

any case, a shock ej on ηt is a full information A(j) on εt.

4 Continuous limited new information

Let us now consider the case where a(.) is not one-to-one and a(εt) has an absolutely continuous

distribution. In this situation the new information a(εt) = α (say) does not define εt and we have to

compute δ = E[εt|a(εt) = α] in order to obtain the impact Θhδ on Yt+h. Since the event a(εt) = α

has probability zero, we have to find the conditional expectation in a continuous distribution context

and some examples are given below.

4.1 Pesaran-Shin (1998) “generalized” impulse response functions

Pesaran and Shin (1998) considered the case where a(εt) ≡ εjt, that is the case where we have a

new information only for a component of εt, namely εjt = α. In the Gaussian case, the computation

of E[εt|εjt = α] is straightforward and we get:

E [εit|εjt = α] =
Σij

Σjj

α
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In particular if α = 1, the immediate impact δ = E[εt|εjt = 1] is Σ(j)Σ−1
jj where Σ(j) is the jthcolumn

of Σ. It is easily seen that this impact is different from the one obtained by an orthogonalized shock

with immediate impact on Yjt equal to one, except if j = 1 [see Pesaran and Shin (1998)].

4.2 New information on a set of individual innovations

If a(εt) ≡ εK
t , where εK

t is a K-dimensional subvector of εt containing any εjt with j ∈ K and

K ⊂ {1, . . . , n}, we have to compute δ = E[εt|ε
K
t = α] where α is now a vector.

Again, in the Gaussian case we immediately get:

δ = ΣKΣ−1
KKα

where ΣK is the matrix given by the columns Σ(j) of Σ such that j ∈ K and ΣKK is the variance-

covariance matrix of εK
t .

For instance, if the new information is εjt = 1 and εkt = 0, the ith component of δ (i 6= j and

i 6= k) will be the coefficient of εjt in the theoretical regression of εit on εkt and εjt.

4.3 New information on responses

We know from equation (6) that the expected response of Yt+h1
(for a given h1) to a value of

εt is Θh1
εt. We may want to impose that some components of this response are given, that is

ΘK1

h1
εt = α1, where ΘK1

h1
is the set of rows of Θh1

corresponding to the components of interest. If this

new information is the only one, the NIRF has to be computed as Θh δ with δ = E(εt |Θ
K1

h1
εt = α1),

that is δ = Σ ΘK1

h1

′ (ΘK1

h1
Σ ΘK1

h1

′)−1 α1 in the Gaussian case. This new information can be combined

with another one, for instance a new information on a set of individual innovations as in Section

4.2, i.e. εK2

t = α2. In this case we have to take:

δ = E(εt |Θ
K1

h1
εt = α1 , εK2

t = α2) ,
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which can be easily computed as soon as K1 + K2 ≤ n. In the Gaussian case, if we denote by S2

the selection matrix such that εK2

t = S2 εt, and given M = (ΘK1

h1

′,S ′
2)

′, we have:

δ = Σ M ′(M Σ M ′)−1




α1

α2




(assuming that M Σ M ′ is invertible).

4.4 New information on long run behavior

Assuming the same framework as in Section 3.3, we can consider a partial new information imposing

that the long run impact on yit is zero, that is:

Γ−1
i (1) C εt = 0 ,

where Γ−1
i (1) is the ith row of Γ−1(1).

4.5 Information defined as the set of impulse vectors Γ

A natural question is to identify the impact of the information imposing that εt belongs to the

set Γ of the impulse vectors introduced by Uhlig (2005). As we have seen in Section 3.2, the set

of impulse vectors is Γ = {γ ∈ R
n : γ′Σ−1γ = 1}, or equivalently Γ = {γ ∈ R

n : γ = Pβ, β ′β = 1},

where P is the lower triangular matrix satisfying Σ = PP ′.

If the new information is εt ∈ Γ, i.e. ε
′

tΣ
−1εt = 1, that is, if a(εt) = ε′tΣ

−1εt and α = 1, we have

to compute E[εt|εt ∈ Γ]. Since εt = Pξt, with ξt ∼ N(0, I) and E[εt|εt ∈ Γ] = PE[ξt|ξ
′
tξt = 1],

we have by symmetry E[εt|εt ∈ Γ] = 0. Therefore, the new information εt ∈ Γ has no impact in

average on Yt+h. Additional constraints are considered in Section 5.5.
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5 Discrete limited new information

5.1 Definition of the new information

Let us now consider the case where the distribution of a(εt) has a discrete component. More

precisely we assume that a(.) =




a1(.)

a2(.)


, where a1(εt) has a continuous distribution and a2(εt) is

valued in a finite set α2 = {α21, ..., α2L}. In this case the conditional distribution of any component

εit of εt given a1(εt) = α1 and a2(εt) = α2j ∈ α2 is obtained by the conditional distribution of εit

given a1(εt) = α1 restricted to the set a2(εt) = α2j . In other words, for any set S:

P (εit ∈ S | a1(εt) = α1, a2(εt) = α2j) =
P (εit ∈ S, a2(εt) = α2j|a1(εt) = α1)

P (a2(εt) = α2j |a1(εt) = α1)
.

Note that a simulation in this conditional distribution of εt given a1(εt) = α1 and a2(εt) = α2j

can be obtained by simulating independently a sequence in the conditional distribution of εt given

a1(εt) = α1 and keeping the first simulation ε̃t satisfying a2(ε̃t) = α2j . It is a simple rejection

algorithm. The conditional expectation E[g(εt)|a1(εt) = α1 and a2(εt) = α2j ], where g is some

given function, can be approximated by the empirical mean of g(ε̃s
t), s = 1, ..., S and where ε̃s

t are

obtained by keeping the simulations satisfying a2(ε̃t) = α2j in a sequence of independent simulations

in the conditional distribution of εt given a1(εt) = α1. However, in some cases explicit forms of such

conditional expectations are available.

5.2 Quantitative information and one interval information

Let us consider the case where a2(εt) = 1l] c, d [(εjt) and a1(εt) = εK
t with c and d real numbers (c < d)

and K ⊂ {1, ..., n} such that j /∈ K. Our purpose is to compute

E[εjt | ε
K
t = α, c < εjt < d]
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and

E[εit | ε
K
t = α, c < εjt < d],

with i /∈ K and i 6= j. In both cases, explicit formulas are available.

i) Computation of E[εjt | ε
K
t = α, c < εjt < d]:

the conditional distribution of εjt given εK
t = α is easily found; it is a Gaussian distribution

with mean µK
j α and variance (σK

j )2 (say) (where µK
j is a row vector). So E[εjt | ε

K
t = α, c <

εjt < d] is given by E[µK
j α + σK

j U | c < µK
j α + σK

j U < d] where U ∽ N(0, 1). We find

E[εjt | εK
t = α, c < εjt < d] = µK

j α + σK
j E

(
U |

c−µK
j α

σK
j

< U <
d−µK

j α

σK
j

)
.

Using the notations cK
j =

c−µK
j α

σK
j

and dK
j =

d−µK
j α

σK
j

, we find:

E[εjt | εK
t = α, c < εjt < d] = µK

j α + σK
j

ϕ(cK
j ) − ϕ(dK

j )

Φ(dK
j ) − Φ(cK

j )
,

where ϕ and Φ are, respectively, the p.d.f and the c.d.f of N(0, 1). In particular, if c = 0 and

d = +∞, we find:

E[εjt | εK
t = α, c < εjt < d] = µK

j α + σK
j λ

(
µK

j α

σK
j

)
,

where λ(x) =
ϕ(x)

Φ(x)
is the inverse Mill’s ratio.

ii) Computation of E[εit | εK
t = α, c < εjt < d]:

we first find the conditional expectation of εit given εK
t = α and εjt, which can be written as

12



µK
ij α + νK

ij εjt (say) and we get:

E[εit | ε
K
t = α, c < εjt < d] = E

[
E
(
εit | ε

K
t = α, εjt

)
| εK

t = α, c < εjt < d
]

= µK
ij α + νK

ij E[εjt | ε
K
t = α, c < εjt < d]

= µK
ij α + νK

ij

[
µK

j α + σK
j λ

(
ϕ(cK

j ) − ϕ(dK
j )

Φ(dK
j ) − Φ(cK

j )

)]
.

In the particular case c = 0, d = +∞, we find:

E[εit | ε
K
t = α, c < εjt < d] = µK

ij α + νK
ij

[
µK

j α + σK
j λ

(
µK

j α

σK
j

)]
.

5.3 Quantitative information and several interval informations

We still assume a1(εt) = εK
t , but now a2(εt) is the set of functions

{
1l] cj , dj [(εjt), j ∈ J

}
, with cj and

dj real numbers (cj < dj) for any j ∈ J , J ⊂ {1, . . . , n} and K ∩ J = ∅.

We have to compute

E[εit | ε
K
t = α, cj < εjt < dj, j ∈ J ], i ∈ J ,

and

E[εit | ε
K
t = α, cj < εjt < dj, j ∈ J ], i /∈ K, i /∈ J .

i) Computation of E[εit | ε
K
t = α, cj < εjt < dj, j ∈ J ], i ∈ J :

the joint conditional distribution of εJ
t given εK

t = α is Gaussian with mean µJKα and variance-

covariance matrix ΣJK (say) and we have to compute the mean of this normal distribution

restricted to (cj < εjt < dj, j ∈ J) (see below).

ii) Computation of E[εit | εK
t = α, cj < εjt < dj, j ∈ J ], i /∈ K, i /∈ J :
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given that

E[εit | ε
K
t = α, cj < εjt < dj, j ∈ J ] (10)

= E[E(εit | ε
K
t = α, εjt, j ∈ J) | εK

t = α, cj < εjt < dj, j ∈ J ] ,

and denoting by µJK
i α + νJK

i εJ
t , the conditional expectation of εit given εK

t = α and εJ
t , we

get:

E[εit | ε
K
t = α, cj < εjt < dj, j ∈ J ] = µJK

i α + νJK
i E[εJ

t | ε
K
t = α, cj < εjt < dj, j ∈ J ] .

Again, the joint conditional distribution of εJ
t , given εK

t = α, is N(µJKα, ΣJK) and, as above,

we have to compute the mean of this normal distribution restricted to the set (cj < εjt <

dj, j ∈ J).

The restriction of a J−variate normal distribution to a product of intervals is in general not

analytically tractable, but it can be simulated either by the rejection algorithm mentioned

above, or by using the Gibbs algorithm, and therefore its mean can be computed by a Monte-

Carlo method. The principle of the Gibbs algorithm is to start from an initial value y0 =

(y01, ..., y0J) and to successively draw a new component in its conditional distribution given

the other components fixed at their more recent values. Since the conditional distribution

of a component given the others is a univariate normal distribution restricted to an interval,

its simulation is straightforward. Indeed, the simulation can be done by using a rejection

method, or by using the fact a random variable X following the standard normal distribution

restricted to an interval ] c, d [ is deduced from a random variable U following the uniform

distribution on [0, 1], by the formula:

X = Φ−1{[Φ(d) − Φ(c)]U + Φ(c)} , (11)
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since P (X < x) = P (Φ(X ) < Φ(x)) = P

[
U <

Φ(x) − Φ(c)

Φ(d) − Φ(c)

]
=

Φ(x) − Φ(c)

Φ(d) − Φ(c)
. This algorithm

is usually faster than the rejection algorithm.

5.4 Quantitative information and interval informations on responses

The quantitative information is still εK
t = α but the interval informations are related to some

responses at some horizons. More precisely the interval informations are:

cjh < Θ
(j)
h

′εt < djh

where the pair (j, h) ∈ S ⊂ {1, . . . , n} × {1, . . . , H} and Θ
(j)
h is the jth column of Θ′

h (or Θ
(j)
h is the

jth row of Θh). In this case, we have to compute:

E[εit | ε
K
t = α, cjh < Θ

(j)
h

′εt < djh, (j, h) ∈ S] ,

where i ∈ K = {1, ..., n} − K.

The conditional distribution of εK
t given εK

t = α is Gaussian and the previous expectation can be

computed by a Monte Carlo method based on the rejection principle, that is, by using simulations

in this distribution and keeping them if they satisfy the inequality constraints. If card(S) ≤ n, the

Gibbs algorithm can also be used, provided that a linear transformation is first done on εt in such

a way that the Θ
(j)
h

′εt, (j, h) ∈ S, are components of the transformed random vector.

This method provides a way to find the new information on εt, which satisfies some constraints

εK
t = α and some constraints on the impulse response function and which is the more in agreement

with the stochastic behavior of εt.
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5.5 Impulse vector and set information on responses: looking for struc-

tural shocks

Uhlig (2005) considered the case where the information is εt ∈ Γ, the set of impulse vectors, i.e.

ε′tΣ
−1εt = 1, and sign information on responses: Θ

(j)
h

′εt > 0, (j, h) ∈ S.

The conditional expectation

δi = E[εit|ε
′
tΣ

−1εt = 1, Θ
(j)
h

′εt > 0, (j, h) ∈ S],

can still be computed by a Monte-Carlo method. Indeed the conditional distribution of εt given

ε′tΣ
−1εt = 1 is the image by P of the conditional distribution of ξt given, ξ′tξt = 1, where ξt ∽ N(0, I)

which is the uniform distribution on the unit sphere. So, the method is a follows:

• draw ξ from N(0, I)

• compute ξ̃ =
ξ

(ξ′ξ)1/2

• compute ε̃ = P ξ̃

• keep the simulation if Θ
(j)
h

′ε̃ > 0, (j, h) ∈ S.

The expectations are obtained from the empirical means of the retained simulations.

Uhlig (2005) used a bayesian approach requiring n1 (say) drawings in the posterior of the VAR

parameters, then for each drawing of the parameters, n2 drawings of ξ uniformly on the unit sphere;

then for each pair of drawings (Σ, ξ̃), the computation of the Choleski matrix P̃ , the computation

of the candidate impulse vector γ̃ = P̃ ξ̃ and of the whole impulse response functions Θ
(j)
h

′γ̃, h ∈

{1, . . . , H}, and, finally, keeping the candidate γ̃ if the IRF satisfies the sign constraints, this method

provides a drawing in the posterior of the impulse vector of interest.

In our method, the conditional expectation δ = (δ1, . . . , δn)′ obviously satisfies the condition

δ′Σ−1δ = 1 and is therefore an impulse vector which is easily computed, does not necessitate

16



any prior distribution and is nicely interpreted as the best predictor impulse vector satisfying the

sign constraints. Moreover, our method is easily extended to the case where the information on

responses is a set information imposing that the vector [Θ
(j)
h

′ε̃, (j, h) ∈ S] belongs to some set E , for

instance a product of intervals.

6 New information on a filter and responses of a filter

6.1 New information on a filter

In some situations, the relevant information is on a linear filter of the basic variables. For instance,

in macro-finance models of the yield curve, this filter may be a term premium, or an expectation

component [see Section 8 and Jardet, Monfort, Pegoraro (2011)].

Let us consider a filter Ỹt = F (L)Yt, where F (L) = (F1(L), ..., Fn(L)) is a row vector of polynomials

in the lag operator L. The innovation of Ỹt at t is ε̃t = F (0)εt, and therefore an information on

ε̃t, defined by ã(ε̃t) = α, can be written as ã[F (0)εt] = α or a(εt) = α (say). This means that, an

information on ε̃t can be viewed as an information on εt and it can be treated as in the previous

framework. Let us consider some examples.

If the information is ε̃t = 1 and εjt = 0, j = 1, ..., n − 1, the impact on Yt+h is Θhδ, where

δ = E[εt|ε̃t = 1, εjt = 0, j = 1, ..., n − 1] is equal to (0, ..., 0, 1/Fn(0)).

If the information is ε̃t = 1, the impact on Yt+h is Θhδ, where

δ =
cov(εt, ε̃t)

V (ε̃t)

=
ΣF ′(0)

F (0)ΣF ′(0)

If the information is ε̃t = 1 and εjt = 0, the impact on Yt+h is Θhδ where the ith component δi

of δ is the coefficient of ε̃t in the theoretical regression of εit on ε̃t and εjt (in particular δj = 0).

We could also impose point informations on several filters in a straightforward way, and extend the
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technique to interval informations.

Let us note that if we are interested in k filters Ỹ1t, ..., Ỹkt, it is always possible to complete with

n − k components of Yt and to apply the NIRF techniques to the dynamic model followed by the

vector thus obtained Y ∗
t . However this would be an awkward method since Y ∗

t has a VARMA

representation implying tedious computations.

6.2 Response of a filter

Similarly, we might be interested in the response of a linear filter to some new information. If we

consider the univariate filter Ỹt = G(L)Yt, we can compute the impact on Ỹt+h of a new information

a(εt) = α at t. Indeed, since the impact on Yt+h is ΘhE[εt|a(εt) = α], the impact on Ỹt+h is

obviously G(L)ΘhE[εt|a(εt) = α] where the lag operator L is operating on h and where Θs = 0 if

s < 0. It is clear that we can also impose interval constraints on some responses of a filter to a new

information which, in turn, may involve this filter or other filters.

7 Path-Dependent New Information Response Functions

In all situations considered above the values of the Yt’s actually observed do not play any role in the

computation of the NIRF, since in equation (8) the impact of Yt−1 cancels out. Let us now consider

two situations in which the past values Yt−1 or the present and future values of some components

of Yt matter.

7.1 Past Path-Dependent NIRF

A relevant practical case in which the impact of the past values Yt−1 does not disappear is when

the new information at t is no longer of the form a(εt) = α, but is given by:

a(εt, Yt−1) = α . (12)
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For instance, if we want to impose that a subset of components Y K
t does not move between t−1

and t we have to impose Y K
t = Y K

t−1 or, denoting by Ŷ K
t|t−1(Yt−1) the prediction of Y K

t made at t− 1

(a linear function of Yt−1), we have to impose:

Ŷ K
t|t−1(Yt−1) + εK

t = Y K
t−1 ,

or εK
t − Y K

t−1 + Ŷ K
t|t−1(Yt−1) = 0 ,

(13)

which is of the form a(εt, Yt−1) = α. In this new setting, the NIRF becomes:

E(Yt+h|a(εt, Yt−1) = α, Yt−1 = yt−1) − E(Yt+h|Yt−1 = yt−1)

or E(Yt+h|a(εt, yt−1) = α, Yt−1 = yt−1) − E(Yt+h|Yt−1 = yt−1) .
(14)

The first term of (14) can be written as:

E[E(Yt+h|εt, Yt−1 = yt−1) | a(εt, yt−1) = α, Yt−1 = yt−1] (15)

and the NIRF becomes:

E
{

[E(Yt+h|εt, Yt−1 = yt−1) − E(Yt+h | Yt−1 = yt−1)] | a(εt, yt−1) = α, Yt−1 = yt−1

}

= E[Θhεt | a(εt, yt−1) = α, Yt−1 = yt−1]

= E[Θhεt | a(εt, yt−1) = α]

= Θh E[εt | a(εt, yt−1) = α]

= Θh δt ,

(16)

with δt = E[εt | a(εt, yt−1) = α]. Therefore, the computation of the NIRF still boils down to the

computation of a conditional expectation of εt given (now) some function of εt and yt−1. In example

(13) we need to compute:

δt = E[εt | εK
t = yK

t−1 − ŷK
t|t−1(yt−1)] (17)
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and we get:

δt = ΣK Σ−1
K K [yK

t−1 − ŷK
t|t−1(yt−1)] , (18)

where ΣK and ΣK K are defined like in Section 4.2.

7.2 Future Path-Dependent NIRF

In some situations it is interesting to study the behavior of the future values of the endogeneous

variables of a dynamic system, when the future path of one or several of them is imposed, and

when simultaneously the present value of another set of variables is also fixed. For instance (see the

application in the next section) we could impose the future values of the short rate and, at the same

time, fix the present value of the GDP growth to its past value or the innovation of the GDP growth

equal to zero. The first kind of information has already been imposed in the conditional prediction

literature [see e.g. Waggoner and Zha (1999), Clarida and Coyle (1984), Doan, Litterman and Sims

(1986)], and we consider the possibility to add an information on the present value (or some isolated

future values) of some other variables.

Let us partition Yt into (Y ′
1,t, Y

′
2,t) where Y1,t is of size n1 and Y2,t is of size n2 = n−n1. We assume,

without loss of generality, that the values of Y2,t are imposed at all dates between t (today) and

T , whereas the values of some components of Y1,t may be imposed at some present of future dates

(but not all). More precisely, using the notation Y2,t:T = (Y ′
2,t, ..., Y

′
2,T )′, we impose the information:

Y2,t:T = α2 , and

C ′
t+hY1,t+h = α1,h , h = 0, ..., T − t

where Ct+h is some selection vector choosing some components of Y1,t+h or more concisely:

Y2,t:T = α2

C ′Y1,t:T = α1
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This information can also be written, with obvious notations:

a(εt:T , Yt−1) = α

and the new feature is the presence of future innovations in function a(.). The NIRF is given by:

E(Yt+h|Y2,t:T , C ′Y1,t:T , Yt−1) − E(Yt+h|Yt−1) . (19)

Using the notation Z̃t = (Y ′
1,t, Y

′
1,t−1, . . . , Y

′
1,t−p+1)

′ and Xt = (Y ′
2,t, Y

′
2,t−1, . . . , Y

′
2,t−p+1)

′, the VAR(p)

process (1) defining the dynamics of Yt can be written in the following block-recursive form:





Y1,t = ν1 + Ã11 Z̃t−1 + Ã12 Xt−1 + ε1,t

Y2,t = ν̃2 + A21




Y1,t

Z̃t−1


 + A22 Xt−1 + ε̃2,t ,

(20)

where ε1,t and ε̃2,t are independent. Introducing the notation Zt =




Y1,t

Z̃t−1


, the previous system

can be written as: 



Zt = ν∗
1 + A11 Zt−1 + A12 Xt−1 + ε∗1,t

Y2,t = ν̃2 + A21 Zt + A22 Xt−1 + ε̃2,t ,
(21)

with ν∗
1 =




ν1

0


, A11 =




Ã11 0

I 0


, A12 =




Ã12

0


, ε∗1t =




ε1t

0


.

Starting the previous system at t, the computation of E(Y1,t+h|Y2,t:T , C ′Y1,t:T , Yt−1) for h =

0, ..., T − t can be viewed as the computation of the smoothed values of Y1,t, Y1,t+1, ..., Y1,T or equiv-
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alently (Zt, Zt+1, ..., ZT ) in the linear Gaussian state-space system:





Zτ = ν∗
1 + A11Zτ−1 + A12Xτ−1 + ǫ∗1,τ

Y2,τ = ν̃2 + A21Zτ + A22Xτ−1 + ǫ̃2,τ

α1,τ−t = C̃ ′
τZτ τ ≥ t

(22)

where C̃ ′
τ = [C ′

τ , 0(1×n1 p)]. The latent variable of this system is Zτ . (Y ′
2,t, α

′
1,τ−t) is the observed

variable and Xτ−1 is a function of the past values. Note that the dimension of the observed variable,

and, therefore, the number of measurement equations may depend on time. The initial condition

of this state-space model is just the degenerate distribution at the observed value of Zt−τ .

Thus, the Kalman filter and smoother provide recursive methods for the computation of E(Y1,t+h |

Y2,t:T , C ′Y1,t:T , Yt−1), h = 0, . . . , T − t, and we are able to compute the first set of components of the

NIRF (19), for h = 0, . . . , T − t:

E(Y1,t+h | Y2,t:T = y2,t:T , C ′Y1,t:T , Yt−1 = yt−1) − E(Y1,t+h | Yt−1 = yt−1) , (23)

which measures the average differential impact on the future values of Y1,t of a new information on

the present and future values of Y2,t and some future values of Y1,t compared to the average future

values of Y1,t when we do not take into account this new information.

The second set of components of the new information response function (19), for h = 0, . . . , T−t,

is simply:

y2,t+h − E(Y2,t+h | Yt−1 = yt−1) , (24)

and gives the differences between the announced futures values of Y2,t and their expected values at

t − 1.

It is worth noting that the NIRF can also be computed for h > T − t. Indeed, we have to

compute, for j ≥ 1:

E(YT+j | Y2,t:T , C ′Y1,t:T , Yt−1) − E(YT+j | Yt−1) . (25)
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The second term of this difference is just the standard prediction of YT+j at t− 1, whereas the first

term can be computed recursively using the VAR equations and the initial values E(YT |Y2,t:T , C ′Y1,t:T ,

Yt−1), . . . , E(YT−p+1 | Y2,t:T , C ′Y1,t:T , Yt−1) previously computed. In particular, by changing the value

of T in (19) we can measure the impact on the NIRF of the horizon T up to which the values of

Y2,t are guaranteed.

8 Applications to Monetary Policy

In this section we propose empirical illustrations of some results discussed in previous sections.

Based on a parsimonious Gaussian VAR(p) model estimated with U.S. quarterly data, we address

two monetary policy issues. First, in order to illustrate the impact of a new information on a filter,

we investigate whether the effects on the short rate (i.e. the reaction of the central bank) of a

new information on the one-year ahead expected inflation are stronger over the three last decades,

confirming the shift at the end of the 1970 to a more anti-inflationary monetary policy [emphasized,

for instance, in Brissimis and Magginas (2006), Castelnuovo and Surico (2010)]. Second, in order

to illustrate the impact of a new information on ”future path”, we investigate how the variables of

our model (and filters of theses variables) respond to the information of a stabilization of future

short term interest rates around the zero lower bound, as it has been announced by the FOMC at

the end of 2008.

8.1 Description of the Data

Our data set contains quarterly observations of the U.S. short-term zero-coupon bond yield rt, i.e

the one-quarter yield, the spread between the one-year zero-coupon yield and the one-quarter yield

St, the one-quarter inflation rate πt and the growth rate of real Gross Domestic Product (GDP) gt,

for the period from 1964:Q1 to 2010:Q3. The quarterly inflation rate πt, from t − 1 to t, is given

by πt = log(Pt/Pt−1), where Pt is the price index level observed the last month of the quarter. The
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GDP growth over the period (t−1, t) is given by gt = log(Gt/Gt−1), where Gt is the real GDP level

at quarter t. The interest rate data are obtained from the Gurkaynak, Sack, and Wright (2007)

[GSW (2007), hereafter] data base4. The price index and the real GDP data are obtained from

the FRED database: Pt is the seasonally adjusted consumer price index for all urban consumer (all

items, CPIAUCSL); Gt is the seasonally adjusted real GDP level, in billions of chained 2005 dollars

(GDPC1). Summary statistics about the short rate and the spread St = Rt − rt (expressed on a

quarterly basis), the GDP growth and the inflation rate are presented in Table 1.

8.2 Model and Decompositions

We collect these variables in the four-dimensional vector Yt = (rt, St, gt, πt)
′. We describe the joint

dynamics of Yt by the following Gaussian VAR(p) process:

Yt = ν +

p∑

j=1

ΦjYt−j + εt , (26)

where εt is a 4-dimensional Gaussian white noise with N (0, Σ) distribution [Σ denotes the (4 × 4)

conditional variance-covariance matrix]; Φj , for j ∈ {1, . . . , p}, are (4 × 4) matrices, while ν is

a 4-dimensional vector. On the basis of several lag order selection criteria (and starting from a

maximum lag of p = 4), the lag length is selected to be p = 3 (see Table 2), and the OLS estimation

of the model is presented in Table 3.

It is well known that any H-year nominal yield Rt(H) can be decomposed into the following

two terms:

Rt(H) = EXt(H) + TPt(H) , (27)

where

EXt(H) =
1

H
E

(
H−1∑

h=0

rt+h|Ωt

)
(28)

is the expectation part of Rt(H), TPt(H) = Rt(H) − EXt(H) is, by definition, the corresponding

4Each observation in our sample is given by the daily value observed at the end of each quarter.
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term premium and Ωt is the available information set at date t. In what follows we will consider

two main cases for Ωt, depending whether it includes or not an information about the future path

of the short term interest rate (see sections 8.3 and 8.4). In addition, EXt(H) can be decomposed

into two components:

EXt(H) = ẼX t(H) + Πe
t (H) (29)

where:

ẼX t(H) =
1

H
E

(
H∑

h=1

r̃t+h |Ωt

)
(30)

is the expectation term of the real yield of residual maturity H , with r̃t+1 = rt−πt+1 the one-quarter

real (ex-post) interest rate, while

Πe
t (H) =

1

H
E

(
H∑

h=1

πt+h |Ωt

)
(31)

is the inflation expectation over (t, t + H). It is possible to show that these three components can

be written as linear filter of Yt = (rt, St, gt, πt)
′ and thus the NIRF approach can be adopted (see

Appendix 2). In particular, in the following two sections, we will consider the case H = 4 quarters

and we will apply the results presented in Section 6 and 7, respectively5.

8.3 Responses to a new information on the 1-year ahead expected in-

flation

Transmission delay of monetary policy to the economy and, more particularly, to the inflation

rate can lead central banks to adopt a pre-emptive strategy, responding to the forecasted value of

inflation instead of its actual or past value. For that reason, some authors have included in VAR

models variables supposed to reflect central banks expectations (Brissimis and Magginas (2006),

Castelnuovo and Surico (2010)). In the following, we show that the NIRF methodology is well

5Considering another maturity for H is possible, but requires the estimation of an affine term structure model.
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adapted to investigate forward-looking monetary policy strategies conducted by central banks. More

precisely, by means of the parsimonious VAR model presented above, we show how to analyze the

reaction of central banks to an increase (decrease) in the inflation expectation, given that the latter

can be expressed as a linear filter of the variables in the VAR (see Appendix 2) and, thus, the

technique of Section 6 can be applied.

In what follows we focus on responses of the short term interest rate, interpreted as the reaction

of the monetary policy, to an increase in the expectation of the one-year ahead inflation rate.

This information includes the following elements. First, in order to isolate specific effects of this

information, we assume that the instantaneous effect of the rise in the expectation of the 1-year

ahead inflation is one-for-one on the 1-year interest rate. In other words, we assume that the

instantaneous response of TPt + ẼX t is zero. Second, we assume, as it is usual in empirical

literature, that the response of real GDP growth occurs with a one-quarter lag. In other words, the

instantaneous response of GDP growth is zero. In figure 1 we report responses of the short term

interest rate, of the one-year spread and of the expectation of one-year inflation before 1979:Q3

(dashed lines) and after 1979:Q4 (solid lines), when the increase in the 1-year ahead expected

inflation is one.

In both sub-samples, responses of the short term interest rate are positive, which is in accordance

with the conventional view of a monetary policy rule in which the central bank adjusts the policy

rate in response to (expected) inflation. However, magnitude of this adjustment depends on the

sample. Before 1979:Q3, the rise in the short rates is less than proportional to the increase in the

expected inflation, leading to an increase in the spread (as the response of the 1-year interest rate

is constructed to be one-for-one). In contrast, response of short term interest rate in the post-1979

period is twice the rise in expected inflation. The instantaneous response of the 1-year spread is

negative accordingly. In addition we notice that the impact on the expected inflation reverts faster

to zero in the post-1979 sample than in the pre-1979 period.

Evidences of a shift in the conduct of the U.S. monetary policy at the end of the 1970s have
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Figure 1: Responses to a shock on the 1-year ahead expected inflation, before 1979:Q3 (dashed lines) and after
1979:Q4 (solid lines)

been emphasized in the literature [see Judd and Rudebusch (1998), Clarida, Gali and Gertler (2000),

Boivin and Giannoni (2006), Lubik and Schorfheide (2004) among others]. This shift is associated

with a significant move to an active anti-inflationary monetary policy stance after 1979. Our results

also confirm these facts.
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8.4 Responses to unconventional monetary policy: effect of forward

policy guidance

Central banks are sometimes confronted to the key issue of how restoring good economic and

financial conditions when the short term interest rate is near the zero lower bound. For instance,

the U.S. Federal Reserve has been recently concerned with this problem. Among the set of measures

proposed to handle this issue, known as unconventional monetary policy measures, one is the forward

policy guidance. The idea is that if a central bank can credibly commit to future policy actions,

it can continue to manage longer-term interest rates to a level consistent with a given objective

of price stability and economic growth. Communication regarding the future path of short term

interest rate is the key ingredient to achieve this goal6.

Forward guidance on monetary policy has been recently implemented by the U.S Federal Reserve.

In its statement released in December 16, 2008, the FOMC announced ”that (anticipated) weak

economic conditions are likely to warrant exceptionally low levels of the federal funds rate for some

time”. A more recent example is the August 2011 FOMC statement: ”The commitee currently

anticipates that economic conditions - including low rates of resources utilization and a subdued

outlook for inflation over the medium-run - are likely to warrant exceptionally low levels for the

federal funds rate at least through mid-2013”.

What are the (expected) responses of economic variables to such information? Does this com-

munication leads to reduce the medium and long term rates? Are these responses different from

those obtained without taking into account this information about the future path of the short term

rate?

Tools developed in section 7 allow us to address these questions. More precisely, we can estimate

the expected response of Yt = (rt, St, gt, πt)
′ and linear filters of Yt to this new information about

6There are several examples of central banks using communication on the future path of short term interest rate,
for instance New Zealand, Norway and Sweden by means of policy rate projections, or Canada and Japan by means
of communication regarding the timing and conditions for rate moves.
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the future path of short term interest rate7.

In what follows, we assume that the path of future interest rate is supposed to remain unchanged

for a known given period. We report in figures 2 and 3 expected responses in 2009:Q1 (and for

the 8 following quarters) of rt, gt,πt, the 1-year interest rate and its components, namely Πe
t , EXt

and TPt, when agents take into account the fact that short rate will remain constant over the 4

following quarters8 (for the case of 8 quarters, see Appendix 3). In order to deal with the monetary

policy shift observed at the end of 1970s, and to perform real-time exercise, the VAR is estimated

over the period 1979:Q4 to 2008:Q4. We also report in dashed lines the expected response obtained

without taking into account future path of short term interest rates. Line with markers represent

realized ex-post values of corresponding variables.

It is worth noting that taking into account this new information significantly improves forecasts

of variables. Predictions of short term interest rate obtained from the VAR go to negative values

(see figure 2(a)). Similarly, expectations of the 1-year interest rate are significantly improved (figure

2(b)) and remain positive. This is notably due to a better prediction of the mean of future short

rates (see 2 (c)). Finally, we can note that forecasts of annual inflation is also improved (3(b)).

Similar results are obtained in the case of a future path of 8 quarters (see figures 4 and 5 in Appendix

3).

All in all, this empirical illustration stresses that considering information on future path of

variables is a key element not only for forecasting purposes, but also for a precise anticipation of the

future effects of a monetary policy intervention (i.e., a short rate path or scenario). New information

responses function methodology provide a promising framework for that purpose.

7It has to be noted that the Federal Reserve does not always communicate about the time slot during which short
rates will remain constant. In our application however this time is supposed to be known and, therefore, superior
and inferior limits of expected response could be obtained considering a range of possible horizon. This is beyond
the scope of the present illustrative exercise.

8This scenario is also suggested by market-based expectations of the future U.S. policy rate based on overnight
index swap.
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(b) 1-year interest rate
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(c) 1-year ahead nominal expectation term
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(d) 1-year ahead expected inflation
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(e) 1-year nominal term premium

Figure 2: Responses to a new information in 2008:Q4 of a constant short term interest rate for the next 4 quarters.
Future path-dependent NIRF-based expected responses (grey solid line), ex-post realization (black solid line with
markers), VAR implied forecasts (grey dashed lines). The ex-post realizations at date t reported in figures (c), (d)

and (e) are respectively 1

4

∑3

h=0
rt+h, 1

4

∑4

h=1
πt+h and Rt −

1

4

∑3

h=0
rt+h where Rt is the 1-year interest rate.
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(a) Annual real output growth

2009Q1 2009Q2 2009Q3 2009Q4 2010Q1 2010Q2 2010Q3 2010Q4
−5

−4

−3

−2

−1

0

1

2

3

(b) Annual inflation rate

Figure 3: Responses to a new information in 2008:Q4 of a constant short term interest rate for the next 4 quarters.
Future path-dependent NIRF-based expected responses (grey solid line), ex-post realization (black solid line with
markers), VAR implied forecasts (grey dashed lines).

9 Conclusions and Further Developments

In this paper we propose a new methodology for the analysis of impulse response functions in VAR

models, which encompasses several standard approaches, such that orthogonalization of shocks

(Sims (1982)), the ”generalized” impulse responses of Pesaran and Shin (1998), or the impulse

vectors of Uhlig (2005). We also show that this methodology is well suited to analyse the effects of

a new information on the sign or on the average response of some variables, as well as on linear filters

of the basic variables of our model. It is also well adapted to study the effects of an information on

(possibly several) interval values associated to some innovation or some response at a given horizon,

or on the past or future paths of these basic variables.

In the last section of the paper we provide two empirical illustrations of the NIRF methodology

based on U.S. data. First, we focus on the impulse responses of the short-term term interest rate

to a new information on the one-year ahead expectation of inflation. We show that the U.S. federal

Reserve adjusts more significantly the short rate in the post-1979 period, confirming the shift to a

more aggressive anti-inflationary policy at the early 1980s. Second, in order to illustrate the impact

of a new information on a ”future path”, we investigate how variables of our VAR respond to the
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information released by the FOMC on December 2008, about the stabilization of future short term

interest rate around the zero lower bound. We show that taking into account this information is

critical and improves significantly forecasts of the macroeconomic and financial factors.

The results of this paper has been derived in the Gaussian case. If the distribution is no longer

Gaussian and if function a(.) is linear the results are still valid if we replace the notion conditional

expectation by the notion of linear regression. If a(.) is non linear, the conditional expectation

E[εt|a(εt) = α] might be approximated by Monte Carlo and kernel techniques.

The results could be also extended to VARMA(p,q). The interval constraints could be replaced

by more general set information tackled by Monte Carlo methods. Finally, the extension to the

nonlinear framework [see Gallant, Rossi, Tauchen (1993), Koop, Pesaran, Potter (1996), Gourieroux

and Jasiak (2005)] could be also an interesting line of future research.

32



Appendix 1 : Tables.

Yields rt St gt πt

Mean 0.0143 0.0005 0.0074 0.0104
Std. Dev. 0.0076 0.0014 0.0085 0.0083
Skewness 0.7738 -0.0143 1.5200 0.2431
Kurtosis 4.2884 7.4666 4.4473 7.4491
Minimum 0.0001 -0.0055 -0.0207 -0.0329
Maximum 0.0398 0.0068 0.0385 0.0407

Table 1: Summary Statistics on U.S. 1-quarter short rate (rt), 4-quarters spread (St), 1-quarter GDP
growth rate (gt) and inflation rate (πt) observed quarterly from 1964:Q1 to 2010:Q3 [Gurkaynak,
Sack and Wright (2007) data base for the 1-quarter and 4-quarters yields; FRED data base for GDP
growth rate (GDPC1) and inflation rate (CPIAUCSL)].

Lag p LR FPE AIC SIC HQ
0 N.A. 3.64e-19 -31.10 -31.03 -31.07
1 528.51 2.23e-20 -33.89 -33.54∗ -33.75
2 63.41 1.84e-20 -34.08 -33.45 -33.83∗

3 33.57∗ 1.80e-20∗ -34.11∗ -33.19 -33.74
4 16.64 1.95e-20 -34.03 -32.84 -33.55

Table 2: Criteria for VAR order selection. Given a sample period of size T , and a n-dimensional Gaussian
VAR(p) process with empirical white noise covariance matrix Ω̂(p), LR = (T −m)[log|Ω̂(p−1)|− log|Ω̂(p)|]
denotes, for each lag p, the sequential modified [Sims (1980)] likelihood ratio (LR) test statistic, where m
is the number of parameters per equation under the alternative. The modified LR statistics are compared
to the 5% critical values. FPE = [(T + np+ 1)/(T − np− 1)]n det(Ω̂(p)) denotes, for each lag p, the final
prediction error criterion. If we denote by log-L = −(Tn/2) log(2π) + (T/2) log(|Ω̂(p)−1|) − (Tn/2) the
maximum value of the log-likelihood function associated to the VAR(p) model, AIC = −2log-L/T+2pn2/T ,
SIC = −2log-L/T +(log(T )/T )pn2 and HQ = −2log-L/T +(2 log(log(T ))/T )pn2 denote, respectively and
for each lag p, the Akaike, Schwarz and Hannan-Quinn information criteria. For each criterion, and starting
from a maximum lag of p = 4, (∗) denotes the optimal number of lags.
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ν Φ1 Φ2 Φ3

rt -0.0013 0.6919 0.2615 0.1031 -0.0319 0.0389 -0.1286 0.0215 0.1148 0.1447 -0.0598 0.0567 0.0731
[-2.3975] [7.5388] [1.4478] [4.0668] [-0.9528] [0.3555] [-0.6882] [0.7909] [3.4329] [1.5652] [-0.3441] [2.2213] [2.1452]

St 0.0003 0.0040 0.3597 0.0093 0.0073 0.1276 0.1769 0.0092 -0.0395 -0.0979 0.0139 -0.0302 -0.0092
[1.1686] [0.0898] [4.0648] [0.7522] [0.4450] [2.3785] [1.8766] [0.6927] [-2.4133] [-2.1610] [0.1636] [-2.4150] [-0.5555]

gt 0.0047 -0.6772 0.2773 0.2388 -0.0702 0.3526 0.2542 0.2156 0.0178 0.3646 0.5419 -0.0176 -0.1255
[2.9315] [-2.4584] [0.5116] [3.1391] [-0.6992] [1.0726] [0.4401] [2.6383] [0.1782] [1.3133] [1.0390] [-0.2294] [-1.2263]

πt 0.0010 0.5982 -0.0505 0.1067 0.1962 -0.4890 -0.7074 0.0416 0.2460 -0.0170 0.2202 -0.0375 0.2872
[0.8403] [2.7956] [-0.1200] [1.8058] [2.5137] [-1.9145] [-1.5763] [0.6563] [3.1554] [-0.0789] [0.5436] [-0.6295] [3.6106]

Ω × 106 Corr. log-L |ψ |
6.52 -1.63 1.42 4.91 ρ12 ρ13 ρ14 3189.64 0.9653
[9.2466] [-5.9387] [0.9450] [4.0162] -0.5097 0.0724 0.3227 0.8494
. 1.57 -1.30 -1.05 ρ23 ρ24 0.6493(c)

[9.2466] [-1.7577] [-1.8260] -0.1356 -0.1410 0.5191(c)
. . 58.7 2.17 ρ34 0.4875

[9.2466] [0.6211] 0.0475 0.4847(c)
. . . 35.5 0.3877

[9.2466] 0.0794(c)

Table 3: Parameter estimates of the state dynamics Xt = ν +
∑3

j=1 ΦjXt−j + εt, with Xt = (rt, St, gt, πt)
′ [Gurkaynak, Sack and

Wright (2007) data base for the 1-quarter and 4-quarters yields; FRED data base for GDP growth rate (GDPC1) and inflation rate
(CPIAUCSL); sample period : 1964:Q1 - 2010:Q3]. t-values are in brackets. ρij denotes the (empirical) correlation between (εit) and

(εjt). log-L denotes the maximum value of the log-Likelihood function. |ψ | indicates the modulus of the roots of equation |Φ̃(ψ)| = 0,

with Φ̃(ψ) = (I4ψ
3 − Φ1ψ

2 − Φ2ψ − Φ3) denoting the characteristic polynomial; (c) indicates a pair of complex conjugate roots.
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Appendix 2. Decomposition of the long-term interest rate and application of the NIRF

methodology

The joint dynamics of Yt = (rt, St, gt, πt)
′ is described by the following Gaussian VAR(p) process:

Yt = ν +

p∑

j=1

ΦjYt−j + εt (32)

that can be rewritten in a VAR(1) form:

Zt = ν̃ + Φ Zt−1 + ε̃t (33)

where Zt = (Y ′
t , Y

′
t−1, ..., Y

′
t−p+1)

′, ν̃ = (ν ′, 0, ..., 0)′ and

Φ =




Φ1 ... ... Φp

I(p×p) 0(p×p) ... 0(p×p)

0(p×p) I(p×p) ... 0(p×p)

...
. . .

...

0(p×p) . . . I(p×p) 0(p×p)




where I(p×p) is the (p × p) identity matrix and 0(p×p) the (p × p) matrix of zeros.

Let us first assume that the set of information available to agents at date t consists in the past and

present values of Zt, that is Ωt = Zt. In this case:

E (rt+h|Ωt) = e′1((I − Φ)−1(I − Φh)ν̃ + ΦhZt)

E (πt+h|Ωt) = e′4((I − Φ)−1(I − Φh)ν̃ + ΦhZt)
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where ei is the ith column of the (4p × 4p) identity matrix. Therefore, we have:

EXt(H) = d0(H) + c0(H)Zt , Πe
t (H) = d1(H) + c1(H)Zt

TPt(H) = d2(H) + c2(H)Zt , ẼX t(H) = d3(H) + c3(H)Zt

where

d0(H) =
1

H
e′1(I − Φ)−1

(
H−1∑

h=0

(I − Φh)ν̃

)

c0(H) =
1

H
e′1

(
H−1∑

h=0

Φh

)

d1(H) =
1

H
e′4(I − Φ)−1

(
H∑

h=1

(I − Φh)ν̃

)

c1(H) =
1

H
e′4

(
H∑

h=1

Φh

)

d2(H) = −d0(H) , c2(H) = e′1 + e′2 − c0(H)

d3(H) = d0(H) − d1(H) , c3(H) = c0(H) − c1(H)

Hence components of Rt(H) can be expressed as linear filter of the variables in the VAR and, thus,

the technique of Section 6 can be applied (see Section 8.3).

Let us now assume that the set of information available at t also includes some information

regarding the future path of one variable in the VAR like the short rate rt. More precisely, we

assume that future values of the short rate are known until the date t + H − 1. We denote by rt,

rt+1,...,rt+H−1 these H known values of the short rate. Hence Ωt =
{
rt, ...rt+H−1, Yt−1

}

The NIRF of EXt+k(H) at date t is given by:

E(EXt+k(H)|Ωt) − E(EXt+k(H)|Yt−1) . (34)

The first component of this expression is:
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E(EXt+k(H)|Ωt) =
1

H
E

(
H−1∑

h=0

E(rt+k+h|Ωt+k)|Ωt

)
(35)

=
1

H

H−1∑

h=0

E (rt+k+h|Ωt) (36)

where E (rt+k+h|Ωt) = rt+k+h for h + k ≤ H − 1.

Similarly, the NIRF of Πe
t (H) at date t is given by:

E(Πe
t+k(H)|Ωt) − E(Πe

t+k(H)|Yt−1) . (37)

The first component of this expression is:

E(Πe
t+k(H)|Ωt) =

1

H
E

(
H∑

h=1

E(πt+k+h|Ωt+k)|Ωt

)
(38)

=
1

H

H∑

h=1

E (πt+k+h|Ωt) . (39)

37



Appendix 3: The case of a short rate future path of 8-quarters.
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(b) 1-year interest rate
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(c) 1-year ahead nominal expectation term
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(d) 1-year ahead expected inflation
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(e) 1-year nominal term premium

Figure 4: Responses to a new information in 2008:Q4 of a constant short term interest rate for the next 8 quarters.
Future path-dependent NIRF-based expected responses (grey solid line), ex-post realization (black solid line with
markers), VAR implied forecasts (grey dashed lines).
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(a) Annual real output growth
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(b) Annual inflation rate

Figure 5: Responses to a new information in 2008:Q4 of a constant short term interest rate for the next 8 quarters.
Future path-dependent NIRF-based expected responses (grey solid line), ex-post realization (black solid line with
markers), VAR implied forecasts (grey dashed lines).
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