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Abstract

Consider a class of exchange economies in which preferences are
continuous, convex and strongly monotonic. It is well known that the
Walrasian correspondence, de�ned over such a class of economies, is not
implementable in Nash Equilibrium. Monotonicity (Maskin (1999)), a
necessary condition for Nash implementation, is violated for alloca-
tions at the boundary of the feasible set. However, we know since
the seminal work of Moore-Repullo (1988) and Abreu-Sen (1990) that
monotonicity is no longer necessary for subgame perfect implementa-
tion. We �rst show that the Walrasian correspondence de�ned over
this class of exchange economies is not implementable in subgame per-
fect equilibrium. Indeed, the assumption of di¤erentiability cannot be
relaxed unless one imposes parametric restrictions on the environment,
like assumption EE.3 in Moore-Repullo (1988).
Next, assuming di¤erentiability, we construct a sequential mecha-

nism that fully implements the Walrasian correspondence in subgame
perfect and strong subgame perfect equilibrium.. We take care of the
boundary problem that was prominent in the Nash implementation
literature. Moreover, our mechanism is based on price-allocation an-
nouncements and �ts the very description of Walrasian Equilibrium.

Keywords: Walrasian equilibrium, double implementation, subgame per-
fect equilibrium, strong subgame perfect equilibrium.
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1 Introduction

Maskin monotonicity (Maskin (1999)) is a necessary condition for imple-
mentation of social choice correspondences in Nash Equilibrium. This con-
dition has been shown to be restrictive in some cases. For instance, for
a class of exchange economies in which preferences are continuous, convex
and strongly monotone, it is now well-known that the Walrasian correspon-
dence is not monotonic, (see, e.g., Hurwicz-Maskin-Postlewaite (1995)). The
violation of monotonicity occurs for Walrasian allocations that are at the
boundary of the feasible set1. Hurwicz (1979) and Schmeidler (1980) have
constructed mechanisms that implement the Walrasian correspondence but
in which o¤ equilibrium allocations may award negative quantities to some
agents. Postlewaite-Wettstein (1989), Giraud-Rochon (2001), Dutta-Sen-
Vohra (1995) or Tian (1992, 2000) among others, construct mechanisms
that implements the (Constrained) Walrasian correspondence2. These mech-
anisms are feasible in and out of equilibrium, and (weakly) balanced. An-
other line of research has been focusing on strategic market games (see,
e.g., Shapley-Shubik (1977) or Dubey-Shapley (1994)). Papers on non-
cooperative bargaining such as Gale (1986,a and b), or more recently Kunimoto-
Serrano(2002) provide full implementation of the Walrasian correspondence
for economies with a continuum of agents. A boundary assumption that
rules out Walrasian allocation at the boundary of the feasible sets is used.
To our knowledge, Yildiz (2002), and the literature on non-cooperative bar-
gaining cited above are the only papers that uses sequential mechanisms.
Yildiz�s results only cover the two players case, and use assumptions such as
uniqueness (and interiority) of Walrasian equilibrium, as well as the single-
peakedness of the o¤er curves in utility space. In our paper, we are interested
in trading procedures with a �nite number of agents, and with �nite length
mechanisms.

It is now well understood that the class of implementable social choice
correspondences rapidly expands when one considers re�nements of Nash
Equilibrium as a solution concept. In their seminal papers, Moore-Repullo
(1988) (MR in the sequel) and Abreu-Sen (1990) (henceforth, AS) show that

1Thomson (1999) shows (�gure 3b) that if preferences are not convex, violations of
monotonicity can occur also for Walrasian allocations that are in the interior of the feasible
set.

2For implementation of the Walrasian correspondence in Nash Equilbrium, the class of
economies that is considered guarantees that Walrasian allocations are interior. Otherwise,
the Walrasian correspondence is substituted by its minimal monotonic extension, namely
the Constrained Walrasian correspondence.
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monotonicity is no longer necessary for implementation in subgame perfect
equilibrium. Suppose that we have two states of the world � and �, and that
outcome a is in the social choice correspondence under � but not under �.
The necessary condition3 says that there exists a test agent who experiences
some preference reversal, when going from one state to the other, between
two arbitrary outcomes x and y. Moreover, those two outcomes need only
be linked to a, in a particular way, through a string of outcomes. On the
other hand, Maskin monotonicity would say that x = a. So, all that is re-
ally needed for subgame perfect implementation, in exchange economies, is
an agent who experiences a preference reversal between two arbitrary out-
comes when going from one state to the other. In particular, it is shown
in MR (1988) that the Walrasian Correspondence is implementable in sub-
game perfect equilibrium. They consider a domain of exchange economies in
which preferences are continuous, convex and monotonic. We �rst show that,
without further restrictions, the Walrasian correspondence de�ned over this
class of economies is not in general subgame perfect implementable. The
necessary sequence of outcomes cannot be constructed: di¤erentiability is a
crucial assumption. Hence, unless one imposes restrictions on the environ-
ment such as assumption EE.3 in MR4, implementation of the Walrasian
correspondence is not possible. Assumption EE.3 is necessary if one does
not impose di¤erentiability, but imposing di¤erentiability does not imply it:
assumption EE.3 is su¢ cient but not necessary in such a case. Di¤erentia-
bility is actually enough to obtain the local information necessary to elicit
whether or not a boundary allocation is Walrasian.

Next, imposing di¤erentiability, the construction of an economically ap-
pealing mechanism remains. A canonical mechanism is constructed in MR
and AS but, as any general mechanism, it fundamentally lacks economic
interpretation. Besides, their game form is complicated and has in�nite
message spaces. It involves each agent reporting the entire preferences pro-
�le5, and announcing an integer at each stage of the mechanism. Parallel to
the literature on Nash implementation, we expect that the design of tailor-
made sequential mechanisms is more appealing. Our aim is to provide an
alternative � and simpler� game form, that is based on the Walrasian no-
tion of allocation and prices. Moreover, it should �t the very description
of Walrasian equilibrium. Given the assumptions on preferences we make,
Walrasian allocations exist not only in the interior but also at the boundary

3See condition C from MR in section 2.
4See assumption EE.3 from MR in section 2 below.
5That is, each agent reporting her own preferences, as well as the preferences of all the

other agents in the economy.
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of the feasible sets. Our construction thus takes care (for the �rst time)
of the boundary problem that was prominent in the Nash implementation
literature. Moreover, our game form doubly implements the Walrasian cor-
respondence in subgame perfect and strong subgame perfect equilibrium.

The plan of the paper is as follows. Section 2 presents the class of
exchange economy we consider and the notations needed for the paper. In
section 3, we highlight the problem that may occur if di¤erentiability is not
assumed. In section 4, we present the mechanism and the implementation
result. Finally, we provide some �nal comments in section 5.

2 The set-up

2.1 Economic environments

There are L in�nitely divisible goods and a set of agents N = f1; : : : ; ng,
with n � 3. The consumption set of each agent i 2 N is Xi = RL+. For each
agent i 2 N , Ri is the complete and transitive binary relation on RL+ indi-
cating (weak) preferences. The associated strict preference and indi¤erence
relations are denoted by Pi and Ii, respectively. The set of possible prefer-
ences of each agent i 2 N is de�ned by Ri. Denote by R =

Q
iRi the set of

possible preference pro�les. A typical preference pro�le is R = (Ri)i2N 2 R.
Apart from his preferences and consumption set, each agent i 2 N is

also characterized by his individual endowment6 !i > 0. The aggregate
endowment is �! � 0.

The only characteristics unknown to the planner are the preferences
of agents. For each agent i 2 N , Xi and !i are known to the planner
and �xed. Only the preferences of agents can vary. An economy is thus
a list of preference relation, one for each agent. Formally, an economy is
R = (Ri)i2N 2 R. We consider two classes of economies.

Class of economy T : for each agent i 2 N , everyRi 2 Ri is continuous,
convex and strongly monotonic7.

Class of economy E : for each agent i 2 N , every Ri 2 Ri is continu-
ous, convex, strongly monotonic and representable by a di¤erentiable utility
function.

6We order vectors with the usual conventions, �, >, �.
7A preference relation Ri de�ned over RL+ is convex if, for every xi and yi 2 RL+ such

that xi Pi yi, we have that �xi + (1� �)yi Pi yi for every � 2 (0; 1].
A preference Ri de�ned over RL+ is strongly monotonic if, for each xi and yi 2 RL+,

xi > yi implies that xi Pi yi.
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A (feasible) allocation is a list of bundle (xi)i2N 2 RLn+ such that
P
xi �

�!. Given an agent i 2 N , xi;l 2 R+ stands for the quantity of good l received
by agent i at bundle xi.

The set of feasible allocations A is,

A = fx 2 RLn+ :
X

xi � �!g:

De�ne by F the set of balanced allocations,

F = fx 2 RLn+ :
X

xi = �!g:

De�ne by P = RL++ the set of strictly positive price vectors.
For each agent i 2 N; denote by Bi(p) and Bi(p)jxi��!, the budget set and

the constrained budget set, respectively, of agent i at a given price p 2 P ,

Bi(p) � fxi 2 Xi j p � xi � p � !ig
Bi(p)jxi��! � fxi 2 Xi j p � xi � p � !i and xi � �!g :

For each agent i 2 N , given a bundle zi 2 RL+, denote by eBi(p; zi) andeBi(p; zi)jxi��!, the modi�ed and constrained modi�ed budget sets, respec-
tively, of agent i at price p 2 P ,eBi(p; zi) � fxi 2 Xi j p � xi � p � zigeBi(p; zi)jxi��! � fxi 2 Xi j p � xi � p � zi and xi � �!g:

Given an agent i 2 N , a preference Ri 2 Ri and a bundle xi 2 Xi,
de�ne:

UCi(xi; Ri) = fyi 2 Xi : yi Ri xig, the upper contour set at xi.
LCi(xi; Ri) = fyi 2 Xi : xi Ri yig, the lower contour set at xi.
SLCi(xi; Ri) = fyi 2 Xi : xi Pi yig, the strict lower contour set at xi.
SUCi(xi; Ri) = fyi 2 Xi : yi Pi xig, the strict upper contour set at xi.
Ii(xi; Ri) = fyi 2 Xi : xi Ii yig, the indi¤erence curve through xi.

Finally, given the assumptions on preferences8, and given a preference
pro�le R = (Ri)i2N 2 R, an allocation x� 2 F is a Walrasian allocation if
there exists p 2 P , such that for each i 2 N , x�i 2 Bi(p) and x�i Ri yi, for
every yi 2 Bi(p).

The Walrasian correspondenceWE : R� A associates to each economy
R = (Ri)i2N 2 R its set of walrasian allocations WE(R).

8 In both classes, preferences are strongly montonic. It implies that at a Walrasian
equilibrium (x; p), p� 0.
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Before proceeding to the next section, we recall the necessary condition
for subgame perfect implementation introduced in MR, as well as assumption
EE.3 made on economic environments.

Condition C: For each R = (Ri)i2N 2 R and R0 = (R0i)i2N 2 R,
R0 6= R9, and each allocation a 2WE(R), a =2WE(R0), there exists a �nite
sequence of allocations fa0 = a; a1; :::; ak; ak+1g such that the following is
true:

a) For each l = 0; :::; k � 1, there exists an agent jl for whom

al Rjl al+1.

b) There is some particular agent jk, with Rjk 6= R0jk , for whom

ak Rjk ak+1 and ak+1 P
0
jk
ak.

EE.3: R = (Ri)i2N 2 R and R0 = (R0i)i2N 2 R, R0 6= R, there exists an
agent i 2 N and two allocations x and y, x; y � 0, and such that

xi Pi yi and yi P 0i xi.

Notice that we do not assume EE.3. This assumption ensures that there
is at least one agent experiencing a preference reversal inside the feasible
sets. We will underline below that, despite its necessity for implementation
of the Walrasian correspondence over the class T , it is only su¢ cient over
the class E .

2.2 Game-form: de�nitions and notations

An extensive game form or mechanism is a game tree with possibly simul-
taneous moves. More formally, it is de�ned as an array � = (N;T; g) where
N is the set of players, T a game tree, and g is an outcome function that
associates a feasible allocation with each path of play. The set of nodes of
the tree T is denoted S. The initial node is s0. The set of terminal nodes
of the tree T is denoted Z. Let Mi be the set of strategies �messages�of
player i, and letM s

i denote the set of strategies available to player i at node
s. Denote M =

Q
iMi. Suppose the strategy pro�le m 2 M is played. Let

g(m)i stand for bundle obtained by agent i 2 N at the allocation prescribed
by the path induced by m, that is, g(m). Let g(m; s) denotes the outcome
corresponding to m starting at node s. As is common in the implementation
literature, we con�ne our attention to pure strategies.

9That is, R0i 6= Ri for at least an agent i 2 N .
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Given an economy R = (Ri)i2N 2 R, the mechanism � de�nes an exten-
sive game form (�; R). A subgame perfect equilibrium of (�; R) is a strategy
pro�le m� 2M such that for all s 2 SnZ and for all i 2 N ,

g(m�; s)i Ri g(mi;m
�
�i; s)

i 8mi 2Mi.

For each R 2 R, the set of subgame perfect equilibrium outcomes of
(�; R) is denoted SPE(�; R).

A strong Nash equilibrium of (�; R) is a strategy pro�le m� 2 M such
that no coalition of agents have an incentive to deviate simultaneously. That
is, for every m0 2 M , coalition S � N , if mi = m

0
i for each i 2 NnS, then

there is j 2 S such that,

g(m�)i Ri g(m
0)i.

A strong subgame perfect equilibrium of (�; R) is a strategy pro�le m�

such that for each proper subgame, the pro�le of strategies is a strong Nash
equilibrium in that subgame. For each R 2 R the set of strong subgame
perfect equilibrium of (�; R) is denoted SSPE (�; R).

Given a class of economies H, an extensive game form � is said to doubly
implement in subgame perfect and strong subgame perfect equilibrium the
Walrasian correspondence if

SSPE(�; R) = SPE(�; R) =WE(R) 8R 2 H.
Now, for each agent i 2 N , select an "i 2 Rl+ such that !i� �i 2 Rl+nf0g

(note that, for each agent i, such an �i exists since we assumed that !i > 0
8i 2 N).

We need to introduce one last piece of notation. De�ne by � : N �!
N the set of one-to-one functions from the set of agents into itself. Let
us de�ne by f(�) the composition of the permutations, where � = (�i),
�i 2 � 8i 2 N . Therefore, f(�) = �1(�2(: : : (�i : : : (�n)) : : :) stands for the
ordered composition of all permutation of �. We call f(�) a (endogenously
determined) protocol. As we shall con�ne our attention to pure strategies,
notice that any agent i 2 N , by making a unilateral change from �i to �

0
i,

can induce any protocol from the composition. The use of permutations is
in e¤ect quite similar to an integer game or a modulo game. In our case,
it captures an idea of anonymity of the mechanism, in the sense that the
equilibria should be independent of protocols. Permutations were used �rst
in a di¤erent fashion in Thomson (1992). It was then extended by Serrano-
Vohra (1997). We make use of this extension.
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3 The need for di¤erentiability

Without stressing the obvious, we brie�y clarify here a point that was made
in MR. In section 6.3 of their paper, they show that if one considers a class
of economies in which preferences are continuous, convex and monotonic,
the (full) Walrasian correspondence is subgame perfect implementable. Im-
plicitly behind this statement lies the assumptions made on economic en-
vironments, in particular assumption EE.3. We show below that without
further restrictions (in particular, without EE.3), the Walrasian correspon-
dence is not, in general implementable, in subgame perfect equilibrium10. If
one allows indi¤erence sets to have kinks, condition C may not be satis�ed:
the sequence of outcomes identi�ed there cannot be constructed inside the
feasible set. Imposing smoothness of indi¤erence curves guarantees that, if
an allocation is Walrasian in one state but not in another, local information
around that allocation and inside the feasible set can be used to construct
this sequence of outcomes; and this without assuming EE.3. After all, hav-
ing R 6= R0 does not necessarily mean that an allocation x that is in the
SCC under R should be removed under R0. Preferences could change in such
a way that lower contour sets expands outside of the feasible sets, keeping
x in the SCC under R0, without the need for EE.3 to be satis�ed. It seems
clear that while with non-di¤erentiability, EE.3 is a necessary assumption
for implementation of the Walrasian correspondence, it is not if one adds
di¤erentiability. This will be highlighted below in example 1.

It is of importance to note that the problem we underline here also
pertains to other competitive concept such as the Lindhal correspondence.
Once the reader has understood example 1, it is easy to extend the problem
to the Kolm triangle and Lindhal allocations as shown below in �gure 3.

We construct an example of an economy with two agents and two goods,
for which it is not possible to identify the sequence of outcomes required
by condition C in MR, for subgame perfect implementation. The example
extends easily to more than two agents economies.

Proposition 1: The Walrasian correspondence is not implementable in
subgame perfect equilibrium in the class of economy T

Proof: We construct the following example.
Example 1: n = l = 2. There are only two di¤erent possible preference

pro�les R = (R1; R2) and R0 = (R01; R2). The preferences are represented
by utility functions as follows.

10Or in any other solution concepts.
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Figure 1

u1(�; R1) =
�
x1 +

1
3y1 if y1 � 4

x1 + y1 if y1 < 4

�
and u1(�; R01) = x1 + y1.

u2(�) = 2x2 + y2
!1 = !2 = (2; 2).

When the pro�le is R, there exists a Walrasian equilibrium (z�; p�) on
the boundary of the feasible set.

z� = ((1; 4); (3; 0)) and p� = (2; 1).
However, (z�; p�) is not a Walrasian Equilibrium under R0. Agent 1

would prefer bundles outside of the feasible set. For instance, the bundle
(12 ; 5) is a¤ordable at p

� and gives a utility of 5:5 > 5.
The situation is depicted graphically in �gure 1 above.

Since (z�; p�) is not a Walrasian Equilibrium under R0, implementabil-
ity in subgame perfect equilibrium requires that there exists a sequence of
outcomes fz�; :::; a; bg and a test agent i 2 N such that

a Ri b but b P 0i a.

Since agent 2 has the same preferences in both pro�les, agent 1 has to be
the test agent. But notice that the preferences of agent 1 di¤er only outside
of the feasible set. Hence, such a sequence cannot be constructed unless one
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allows for infeasibility, which is of course ruled out in our paper. The prob-
lem stems from the non-di¤erentiability of u1(�; R1) at z�1 . Without further
restrictions on T , the Walrasian correspondence is not implementable.

Q.E.D.

Assuming di¤erentiability does not imply assumption EE.3. Implementabil-
ity of the Walrasian correspondence and non-di¤erentiability implies that
one has to parametrize the environment in a way similar to EE.3. Exclud-
ing kinked indi¤erence curves, we do not need further restriction on the
environment. If, given two economies, an allocation is Walrasian in one but
not in the other, di¤erentiability guarantees that local information around
that allocation can be used to construct a (feasible) sequence of outcomes.
This can be seen in �gure 2.

The indi¤erence curves of agent 1 under preference R1 do not have kinks
anymore. The allocation z� is not Walrasian under R0 but we can now
identify the sequence of outcome fz�; x; yg, as shown in the graph. The
allocations x and y can be used to show a preference reversal for agent 1 when
going from R1 to R01. When di¤erentiability is imposed, the indi¤erence
curves going through z� under R1 and R01 have to be di¤erent around z

�

(and inside the feasible set), if z� is no longer Walrasian at R01.
In �gure 3 above, we see that this problem applies as well to the Lindhal

correspondence. Hence, in the class of economy T ; the Lindhal correspon-
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dence is not implementable either.

4 Taking care of the boundary problem

We consider the class of economy E in which preferences are continuous,
convex, strongly monotonic and representable by di¤erentiable utility func-
tions. We construct a mechanism that doubly implements the Walrasian
correspondence in subgame perfect and strong subgame perfect equilibrium.
As it was shown by Hurwicz and Al. (1995) �and this fact is now well-
known�, the Walrasian correspondence de�ned over our class of economies
violates monotonicity for Walrasian allocations that are at the boundary of
the feasible set. It is not implementable in Nash Equilibrium. However,
since the work of MR and AS, we know that monotonicity is no longer
necessary for subgame perfect implementation. As we saw above, without
further restrictions on T , we cannot implement the Walrasian correspon-
dence. Having clari�ed this issue, the reason for constructing an alternative
mechanism to the canonical game form constructed in MR and AR is clear.
It is of interest to investigate the design of more tailor-made mechanisms.
A simple and economically appealing mechanism that solves the boundary
problem is absent from the subgame perfect implementation literature.

The mechanism we construct has three stages. It involves price-allocation
announcements at the �rst stage, and is thus more reminiscent of a mar-
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ket process. Moreover, it �ts closely the description of Walrasian Equilib-
rium. First, remember that the Walrasian correspondence is implementable
in Nash equilibrium over a class of economies in which Walrasian allocations
are always interior. We feel legitimate to make the game stops at stage 1 if
allocations are in the interior of the feasible set11. If, given a price p 2 P , an
interior allocation is not Walrasian, at least one agent would like to obtain
a di¤erent feasible bundle at that price. Moving along price hyperplanes
�ts the Walrasian story: no one should prefer any other a¤ordable bundles.
This idea was already used, for instance, in Dutta-Sen-Vohra (1995). Given
an interior allocation, the information contained locally in prices is enough
to determine whether or not an allocation is Walrasian. When the allocation
is on the boundary of the feasible set, this device is not enough anymore.
Moves along price hyperplanes can lead to infeasible bundles. Instead, we
still rely on the information contained locally in prices, but we use an idea of
recontracting. An agent can propose a di¤erent price vector to someone re-
ceiving a bundle that is in the interior of his consumption set. These prices,
along with the (boundary) allocation agreed upon at stage 1, generates new
budget sets � hence the idea of recontracting. If a boundary allocation is
Walrasian with price p, then a di¤erent price p0, with this allocation as ref-
erence point, will automatically generates agents who would like to retrade.
On the other hand, if an allocation is not Walrasian and preferred bundles
are infeasible, it is possible to propose a di¤erent price vector such that at
least one agent �among the agents who receive strictly positive bundles�
would want to retrade. To understand this, take a look at �gure 4 below.

The graph is as in �gure 2. The pair (z�; p�) is a Walrasian equilibrium
at R but not at R0. The price p0 6= p is such that for every feasible bundles
x1 6= z�1 with p� � x1 = p� � !1, we have that p0 � x1 < p0 � z�1 . When agent 1
has preferences R1, there exists x1 such that x1 P1 z�1 and p

0 � x1 = p0 � z�1 .
However, when agent 1 has preferences R01, such a feasible and budget-
balancing x1 does not exist. This indicates that (z�; p�) is not Walrasian at
R0. For if (z�; p�) was in fact a Walrasian equilibrium at R0, any p0 6= p such
that p� � x1 = p� � !1 and p0 � x1 < p0 � z�1 ; for any feasible x1 6= z�1 ; would
create pro�table retrading opportunities for agent 1.

The intuition developed with �gure 3 is exactly what we use in our
mechanism for allocations that are at the boundary of the feasible set. The
retrading device is used at stage 2.

We shall now present formally the mechanism we use.

11Hence, if the domain of economies is such that Walrasian allocations are interior, our
mechanism never goes beyond the �rst stage.
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Mechanism �:

Stage 1: mi = (x; p; �)i 2 F � P � � such that 8i 2 N , pi � xij = pi � !j
8j 6= i. If,

1) (x; p)i = (�x; �p) 8i 2 N and �xi � 0 8i 2 N , the game stops and the
outcome implemented is �x.

2) (x; p)i = (�x; �p) 8i 2 N and �xj;l = 0 for some j and l, then go to stage
2.

3) (x; p)j = (�x; �p) 8j 6= i, i 6= fn(�),mi = (x0; p0) 6= (�x; �p). If �p�x0i = �p�!i,
then agent i gets x0i. Agent j = fn(�) gets the 0 bundle and the other divide
the rest equally.

Otherwise if �p �x0i 6= �p �!i, each agent k 2 N receives his endowment !k.
4) In all other cases, agent j = fn(�) receives !j � �j . Each agent

i 6= ffn (�) ; f1(�)g receives !i and agent k = f1(�) receives !k + �j .

Stage 2: Agent f1(�) selects an agent fi 6= f1(�) and announces p0 2 P .
1) p0 6= �p, �xfi � 0 and p0 is such that there exists feasible bundles

yfi 6= �xfi , with �p � yfi = �p � !i and p0 � yfi < p0 � �xfi . Go to stage 3.
2) In all other cases, the game stops and �x is implemented.

Stage 3: Agent fi chooses between,

qfi 2
�
qfi � �!, qfi 6= �xfi : p0 � qfi = p0 � �xfi , �p � qfi > �p � �xfi

	
and �xfi :
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If he chooses �xfi , he gets it. Agent f1(�) gets �xf1(�)+
1
n�2(�!��xfi��xf1(�)).

If agent fi 6= fn(�), then agent fn(�) receives 0 and the other agents j =2
ff1(�); fi; fn(�)g divide the rest equally. Otherwise, if fi = fn(�), then
agent fn�1(�) receives 0 and the other agents j =2 ff1(�); fi; fn�1(�)g divide
the rest equally.

If he chooses qfi(�), he gets it. Agent f1(�) gets 0. The others divide the
rest equally if any.

Theorem 1: The extensive form mechanism � doubly implements in
subgame perfect and strong subgame perfect equilibrium the Walrasian cor-
respondence in the class of economies12 E.

Proof: We �rst show that13 SPE(�; R) � WE(R). That is, we pro-
ceed to show that if m is a subgame perfect equilibrium of (�; R), then
g(m) 2WE(R). In order to prove the assertion, consider a subgame perfect
equilibrium m, in which m1

i = (x; p; �)
i and g(m) = a.

Lemma 1: (x; p)i = (�x; �p) 8i 2 N
Suppose not. We have two cases to consider.
Case 1: (x; p)j = (�x; �p) 8j 6= i and i 6= fn(�). First, if �p�x0f1(�) = �p�!f1(�),

agent fn(�) gets the 0 bundle. We can construct a pro�table deviation for
this agent. He deviates by appropriately announcing a permutation so as to
be �rst in the protocol, and a di¤erent price-allocation pair. A consequence
of such a deviation is that he then receives his endowment majored by a
positive epsilon. Since !i > 0 and preferences are strongly monotonic, this
is a pro�table deviation for agent fn(�). A contradiction.

Second, if �p � x0f1(�) 6= �p � !f1(�), then everyone receives his endowment.
But notice that any agent j 6= i, by modifying his permutation so as to be
�rst in the protocol and announcing (x0; p0) 6= (�x; �p) could obtain !j+�fn(�).
Since �k > 0 for every k 2 N and preferences are strongly monotonic, this
is a pro�table deviation. A contradiction.

Case 2: One agent i = fn(�) disagrees with the other about the price-
allocation pair, or more than one agent makes contradictory announcements
of a price and an allocation. In such a case, agent i = fn(�) receives !i �
�i and each agent j =2 ff1(�); fn(�)g receives !j . Any such agent j =2
12Recall that in the class of economies E , for each i 2 N and each Ri 2 Ri, preferences

are continuous, convex, strongly montonic and representable by a di¤erentiable utility
functions.
13Since SSPE(�; R) � SPE(�; R); it is enough, for the �rst part of the proof, to show

that SPE(�; R) �WE(R).
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ff1(�); fn(�)g could deviate by announcing a di¤erent permutation so as
to be �rst in the protocol � modifying his announcement of a price and
allocation if necessary� and receive !j + �fn . Since �k > 0 for each k 2 N
and preferences are strongly monotonic, this is a pro�table deviation for
agent j, a contradiction.

Therefore, both cases lead to a contradiction with m being a subgame
perfect equilibrium. A consequence of this proof is that a is individually
rational.

Lemma 2: If for each i 2 N , �xi � 0, then (�x; �p) is a Walrasian
Equilibrium

Suppose not. The game stops at stage 1. The allocation �x, with �xi � 0
8i 2 N , is the outcome of the game but is not Walrasian given the price �p.
By de�nition of a Walrasian equilibrium, convexity of preferences and the
fact that �x is an interior allocation, there exists an agent i with preferences
say, Ri 2 Ri, and a feasible bundle x0i with p0 � x0i = p0 � !i, and such that
x0i Pi �xi. Agent i can deviate at stage 1 by appropriately announcing a
permutation �0i 6= �i so as to be, say, �rst in the protocol, as well as (x0; �p)
with x0i as identi�ed above. In x

0, agent i assigns, say, x0j =
�!�x0i
n�1 to each

agent j 6= i. Agent i is awarded x0i, which is strictly preferred. This is a
pro�table deviation, a contradiction.

As a consequence, if �x is an interior allocation, it is the outcome of the
game and it is Walrasian given �p.

Lemma 3: If �x is a boundary allocation, it is the outcome of the game
Suppose not. There exists an agent i 2 N for whom �xi;l = 0 for some

l, and the game goes beyond stage 2. By the rules of the game, one agent
k 2 ff1(�); fn(�); fn�1(�)g receives the 0 bundle. Consider such an agent
k. Agent k modi�es his permutation, if necessary, so as to be �rst in the
protocol. At stage 2, agent k announces p0 = �p and whatever name in the
remaining protocol. The game stops with �x as outcome. Remember that
for each agent j 2 N , !j > 0, �p � �xj = �p � !j and �p � 0. Thus, it is the
case that �xj > 0 for each agent j 2 N . Hence, by deviating, agent k can
obtain �xk > 0. By strong monotonicity of preferences, this is a pro�table
deviation. A contradiction.

Lemma 4: If �x is a boundary allocation, (�x; �p) is a Walrasian Equilib-
rium

Suppose not. �x is the outcome of the game at stage 2 but (�x; �p) is not
Walrasian. We have two cases to consider.
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1) �x is the outcome of the game but there exists an agent i 2 N , with
preferences Ri 2 Ri, for whom

Bi(�p)jxi��! \ SUCi(�xi; Ri) 6= ;.

Agent i has a pro�table deviation. He deviates at the �rst stage and modi�es
his permutation, if necessary, so as to be last in the protocol. At stage 2, he
announces (x0; �p) with x0i 2 Bi(�p)jxi�!\SUCi(�xi; Ri) such that �p �x0i = �p �!i.
For each agent j 6= i, x0j =

�!�x0i
n�2 . In consequence, the game stops at stage

1 and agent i receives x0i which is strictly preferred to �xi by construction.
This case is therefore not possible in equilibrium. The only case left is when
there exists an agent i 2 N , for whom Bi(�p) \ SUCi(�xi; Ri) 6= ;.

2) �x is the outcome of the game but there exists an agent i 2 N , with
preferences Ri 2 Ri, for whom

Bi(�p) \ SUCi(�xi; Ri) 6= ;.

Since the previous case is ruled out, we have that if x0i 2 Bi(�p) \
SUCi(�xi; Ri), then x0i;l > �!l for some good l. Notice that for this agent
i, �xi � 0. Consider an agent j 6= i. Agent j has a pro�table devia-
tion. He announces a di¤erent permutation at stage 1, if necessary, so as
to be �rst in the protocol. At stage 2, he announces p0 6= p such thateBi(p0; �xi)jxi�! \ UCi(�xi; Ri) = f�xig, � where eBi(p0; �xi)jxi��! = fxi � �! :
p0 � xi � p0 � �xig� , and calls agent i. The best response of agent i at stage
3 is to choose �xi. Hence, agent j will be awarded �xj + 1

n�2(�! � �xi � �xj).
Since �xk > 0 for each k 2 N and preferences are strongly monotonic, this is
a pro�table deviation.

Thus, both cases lead to the construction of a pro�table deviation, a
contradiction with m being a subgame perfect equilibrium. This concludes
the �rst part of the proof.

We have showed that every SPE outcome should be a Walrasian alloca-
tion (on the boundary or inside the feasible set). To complete the proof, we
prove the opposite direction. That is, we prove thatWE(R) � SSPE(�; R).
Suppose (x�; p�) is a Walrasian equilibrium and that the preference pro�le
is R = (Ri)i2N 2 R. Then the following strategies support x� as SSPE
outcome of (�; R).

(i) Every agent i announces (x�; p�; �I)i, where �I is the identity permu-
tation.
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(ii) Let (�p; �x) be the unanimously agreed price-allocation pair and f(�)
the composition of permutations at stage 1.

Agent f1(�):
a) There exists an agent fi 6= f1(�) with preferences, say, Rfi 2 Rfi ,

and �xfi � 0, such that Bfi(�p)jxfi��! \ SUCfi(�xfi ; Rfi) = ; and there exists
x0fi 2 Bfi(�p) \ SUCfi(�xfi ; Rfi) with x

0
fi;l
> �!l for some l.

Agent f1(�) calls agent fi and announces an appropriate p0 (given the
rules of the game) such that �xfi 2 eBfi(p0; �xfi)jxfi��! \ UCfi(�xfi ; Rfi) andeBfi(p0; �xfi)jxfi��! \ SUCfi(�xfi ; Rfi) = ;.

b) Otherwise, agent f1(�) announces p0 = �p and calls agent f2(�).

(iii) Agent fi chooses the bundle she prefers between �xfi and qfi 2
fqfi � �! : p0 � qfi = p0 � �xfi , �p � qfi > �p � !fig. If she is indi¤erent between �xfi
and any such qfi , then she announces �xfi .

The optimality of part (iii) is clear. Agent fi chooses the bundle she
prefers between the two that are proposed to her. If she is indi¤erent between
the two14, she agrees with agent f1(�). Now, notice that agent f1(�) is
playing a best response at stage 2. He announces p0 6= �p only if there exists an
agent fi 6= f1(�) for whom xfi � 0, Bfi(�p)jxfi��! \ SUCfi(�xfi ; Rfi) = f�xfig
and there is a x0fi 2 Bfi(�p) \ SUCfi(�xfi ; Rfi) with x

0
fi;l

> �!l for some l.
By doing so, agent f1(�) can obtain �xf1(�) +

1
n�2(�! � �xfi � �xf1(�)) > �xf1(�)

(by appropriately choosing a price p0 6= �p, and calling agent fi). Whenever
this condition is not satis�ed, one of the best response of agent f1(�) is to
announce p0 = �p. If agent f1(�) does not make the game to stop at stage
2 in such a case, given the strategies of agent fi, agent f1(�) would receive
at best �xf1(�) or the 0 bundle. Can both these agents gain by deviating?
Given the rules of the game, they cannot be made both better o¤ at stage
3.

Finally, since every Walrasian allocation is individually rational and such
that for each i 2 N , Bi(�p) \ SUCi(�xi; Ri) = ;, the behavior in (i) is also
optimal for each individual agents. Any deviation by a coalition will result in
the same outcome (if agents just modify their permutation) or in an outcome
that is weakly dominated by any Walrasian allocations (obtaining individual
endowments in which it is not possible to make coalitions strictly better o¤).
This pro�le of strategies is a strong subgame perfect equilibrium.

Hence, on the equilibrium path, each agent i 2 N announces (x; p)i =
(x�; p�). If for each agent i 2 N we have that x�i � 0, the game stops at stage

14This situation could happen o¤ the equilibrium path.
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1 and x�, an interior Walrasian allocation, is implemented. Otherwise, it
goes to stage 2 where agent f1(�) con�rms the status-quo coming from stage
1. The game stops and x�, a boundary Walrasian allocation, is implemented.

Q.E.D.

Remark 1 In the previous section, we underlined that the issue raised in
example 1 pertains to the Lindhal correspondence. The above mechanism can
be adapted to that case. Lindhal equilibrium, being a competitive concept,
is well-adapted to the use of prices and allocations as part of the message
spaces of agents. In our case, the message space of agents should be enlarged
at stage 1. It should incorporate the quantities of public good consumed
and personalized price vectors associated to them15. An example of such a
mechanism is provided in the appendix.

5 Conclusion

We have shown that, without additional parametric restrictions on the envi-
ronment, the Walrasian correspondence may not be implementable in sub-
game perfect equilibrium. Di¤erentiability can be a crucial assumption.
Moreover, this issue also applies to another well-known competitive concept,
namely Lindhal Equilibrium. Condition C, a necessary condition for imple-
mentation in subgame perfect equilibrium, may not be satis�ed in such a
case, as shown in example 1. Taking into account this observation, we added
di¤erentiability and constructed a sequential game form that takes care of
the boundary problem. It doubly implements the Walrasian correspondence
in subgame perfect and strong subgame perfect equilibrium. It is thus ro-
bust to coalitional deviations. Our mechanism is based on price-allocation
announcements and �ts the Walrasian story. In accordance with Nash im-
plementability of interior Walrasian allocations, the game stops at stage 1
when allocations are interior. Beyond stage 1, only boundary allocations are
allowed, and a retrading device is used to elicit whether or not the price-
allocation pair agents agreed on is a Walrasian equilibrium. Moves along
price hyperplanes are at the heart of the Walrasian equilibrium concept. In
addition, the mechanism could be modi�ed so as to cover the case of the
(full) Lindhal correspondence. Our mechanism is thus well-adapted to com-
petitive concepts. Price-taking behavior is a consequence of the rules of the
game. Competition can be maintained even with a small number of agents.
15Remember that Lindhal Equilibrium are based on a system of personalized price

vectors, one for each agent. The prices of the private goods are the same for all agents.
However, agents typically face di¤erent pices for the public goods.
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A further extension is to incorporate the important case of two agents.
We would then obtain a uni�ed construction. Moreover, having a continuous
outcome function, incorporating production, or simply to allow for a more
general model in which individual endowments are not known to the designer
and can vary across states would constitute possible avenues. We leave these
questions open for future research.
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Appendix
We construct a mechanism to implement the Lindhal correspondence in

subgame perfect equilibrium. For simplicity, suppose there are the same
number of public goods and private goods. Each agent i 2 N has a prefer-
ence relation de�ned over R2L+ . As before, the only characteristics of agents
unknown to the planner are the preferences of agents. An economy is sim-
ply R = (Ri)i2N 2 R. We consider the class of economies E de�ned earlier.
Each agent i 2 N is endowed with an amount !ix > 0 of private good. The
aggregate endowment is �!x � 0.

Each public good yl is produced using private good xl as input. Public
goods are produced using a constant returns to scale technology. Formally,
for each public good l, yl = ( 1�l )xl.

A (feasible) allocations is a list of bundles z = (xi; y)i2N 2 R2L+ such
that

P
xi + � � y � �!x, where � = (�1; :::; �K)

Given an agent i 2 N , xi;l 2 R+ stands for the quantity of good l received
by agent i at bundle of private goods xi.
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De�ne by F the set of balanced allocations,

F =
n
(x; y) 2 R2Ln+ : yi = yj = y for each i; j 2 N and

X
xi + � � y = �!x

o
:

De�ne by P = RL++ the set of strictly positive price vectors for private
goods. For each agent i 2 N , de�ne by Qi = RL++ the set of personalized
strictly positive price vectors for public goods. Denote by Q =

Q
Qi.

For each agent i 2 N; denote by Bi(p) and Bi(p)jxi��!, the budget set
and the constrained budget set, respectively, of agent i at a given price p 2 P
and qi 2 Qi,

Bi(p; qi) �
�
(xi; y) 2 R2L+ j p � xi + qi � y � p � !ix

	
Bi(p; qi)jxi+��y��!x �

�
(xi; y) 2 R2L+ j p � xi + qi � y � p � !ix and xi + � � y � �!x

	
:

For each agent i 2 N , given a bundle zi = (x0i; y
0) 2 R2L+ , denote byeBi(p; qi; zi) and eBi(p; qi; zi)jxi+��y��!x , the modi�ed and constrained modi�ed

budget sets, respectively, of agent i at price p 2 P and qi 2 Qi,eBi(p; ; qi; zi) �
�
(xi; y) 2 R2L+ j p � xi + qi � y � p � x0i + qi � y0

	
eBi(p; qi; zi)jxi+��y��!x �

�
(xi; y) 2 R2L+ j p � xi + qi � y � p � x0i + qi � y0 and xi + � � y � �!x

	
:

Finally, given the assumptions on preferences, an (x�; y�) 2 F is a
Lindhal allocation if there exists p� 2 P and personalized price vectors
q�i 2 Qi, one for each agent, such that

P
q�i = �, and for each agent i 2 N ,

(x�i ; y
�
i ) 2 Bi(p; qi) and (x�i ; y�i ) Ri (xi; yi) for every (xi; yi) 2 Bi(p; qi).

For each R 2 R, denote by LE(R) the set of Lindhal allocations of that
economy.

The modi�ed version of our mechanism is the following.
Mechanism �:

Stage 1: mi = ((x; y); p; q; �)i 2 F �P �Q�� such that for each i 2 N ,
pi � xij + qij � y = pi � !jx and

P
qij = � 8j 6= i.

1) ((x; y); p; q)i = ((�x; �y); �p; �q) 8i 2 N and �xi � 0 8i 2 N , the game
stops and the outcome implemented is (�x; �y).

2) ((x; y); p; q)i = ((�x; �y); �p; �q) 8i 2 N and �xj;l = 0 for some j and l, then
go to stage 2.
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3) ((x; y); p; q)i = ((�x; �y); �p; �q) 8j 6= i, i 6= fn(�), mi = ((x0; y0); p0; q0) 6=
((�x; �y); �p; �q). If �p�x0i+�q�y0 = �p�!ix, then agent i gets (x0i; y0). Agent j = fn(�)
gets the 0 bundle and each agent k =2 fi; fn(�)greceives

�
1
n�2(�!x � x

0
i � � � y0); y0

�
.

Otherwise, if �p � x0i + �q � y0 6= �p � !ix, each agent k 2 N receives his
endowment !kx.

4) In all other cases, agent j = fn(�) receives !jx � �j . Each agent
i 6= ffn (�) ; f1(�)g receives !ix and agent k = f1(�) receives !kx + �j .

Stage 2: Agent f1(�) selects an agent fi 6= f1(�) and announces (p0; q0fi) 2
P �Qfi .

1) (p0; q0fi) 6= (�p; �qfi), �xfi � 0 and (p0; q0fi) is such that there exists
feasible bundles (x0fi ; y

0) 6= (�xfi ; �y), with �p � x0fi + �qfi � y0 = �p � !ix and
p0 � x0fi + q

0
fi
� y0 < p0 � �xfi + q0 � �y. Go to stage 3.

2) In all other cases, the game stops and (�x; �y) is implemented.

Stage 3: Agent fi chooses between (�xfi ; �yfi) and

(xfi ; y) 2
�
xfi + � � y � �!x : p

0 � xfi + q0fi � y = p
0 � �xfi + q0fi � �y, �p � xfi + �qfi � y > �p � !fix

	
.

1) If he chooses (�xfi ; �yfi), he gets it. Agent f1(�) gets (�xf1(�)+
1
n�2(�!x�

�xfi � �xf1(�) � � � �y); �y). If agent fi 6= fn(�), then agent fn(�) receives 0
and each agent j =2 ff1(�); fi; fn(�)g receives ( 1

n�2(�!x � �xfi � �xf1(�) � � �
�y); �y). Otherwise, if fi = fn(�), agent fn�1(�) receives 0 and each agent
j =2 ff1(�); fi; fn�1(�)g receives ( 1

n�2(�!x � �xfi � �xf1(�) � � � �y); �y).
2) If he chooses (xfi ; y), he gets it. Agent f1(�) gets 0. Each agent

j =2 ff1(�); fig receives
�

1
n�2(�!x � xfi � � � y); y

�
.

Theorem 2: The extensive form mechanism � implements in subgame
perfect equilibrium the Lindhal correspondence in the class of economies E.

Proof: The proof is very similar to the one of theorem 1. It is therefore
omitted.

Q.E.D.
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