Mathematical modeling of choice behavior: from theory to practice

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

- I iterature review
- Need to model behavior
- Applications
- Importance

Some theory

Decision rule

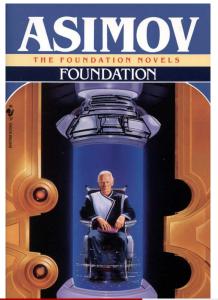
- The random utility model
- Questioning rationality

- Case studies 5
 - Market shares of electrical vehicle

- 4 同 6 4 日 6 4 日 6

- Value of time
- Path to purchase
- 6 Conclusion

Literature review


Psychohistory

Branch of mathematics which deals with the reactions of human conglomerates to fixed social and economic stimuli. The necessary size of such a conglomerate may be determined by Seldon's First Theorem.

Encyclopedia Galactica, 116th Edition (1020 F.E.) Encyclopedia Galactica Publishing Co., Terminus

- 4 週 ト - 4 三 ト - 4 三 ト

Literature review

Asimov, I. (1951) *Foundation*, Gnome Press

Motivation: shorten the period of barbarism after the Fall of the Galactic Empire

- 4 同 6 4 日 6 4 日 6

M. Bierlaire (EPFL)

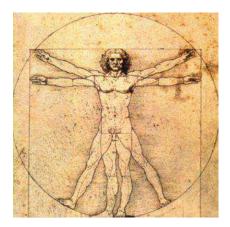
Literature review

Albus Dumbledore

It is our choices that show what we truly are, far more than our abilities

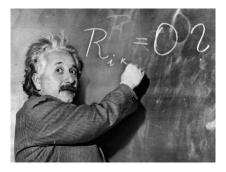
Jean-Paul Sartre

We are our choices


Ken Levine

- We all make choices, but in the end our choices make us.
- In the end what separates a man from a slave? Money? Power? No, a man chooses... a slave obeys.

Motivation


Human dimension in

- engineering
- business
- marketing
- planning
- policy making

<ロ> (日) (日) (日) (日) (日)

Theories and methods

Need for

- behavioral theories
- quantitative *methods*
- operational mathematical *models*

イロト イポト イヨト イヨト

Economic approach

Concept of demand

- marketing
- transportation
- energy
- finance

Supply Side Demand Side 南ご手

- 4 同 6 4 日 6 4 日 6

3

Need to model behavior

Transportation

- Supply = infrastructure
- Demand = behavior, choices

イロト イポト イヨト イヨト

• Congestion = mismatch

Transportation

• Usually in operations research:

- ₹ 🖬 🕨

- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: P = f(Q)
- Inverse demand: $Q = f^{-1}(P)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

(日) (同) (三) (三)

Choices

Concept of choice

- Marketing:brand, product
- Transport: mode, destination
- Energy: type, usage
- Finance: buy/sell, product

- 4 同 6 4 日 6 4 日 6

Willingness to pay for travel time savings

- Swiss Federal Road Office
- Compute the Swiss value of time

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Route choice

- How do traveler select an itinerary?
- Impact of information and guidance
- Data: Nokia

Modeling behavior

Market share of electrical vehicles

- Renault Suisse
- Forecasting of market shares

• • = • • = •

Dynamics of vehicle ownership

- PSA Peugeot Citroën
- Vehicle transactions model
- Changes in households vehicle ownership

• • = • • = •

Applications

Path to purchase: the case of ice creams

- Nestlé Research Center
- Impact of the design of the poster
- on the choice of ice cream

Automatic analysis of facial expressions

- Images and videos
- Signal Processing Lab
- Classification algorithm

A B F A B F

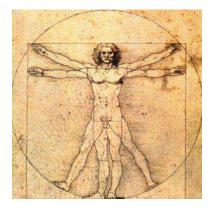
Importance

Daniel L. McFadden

- UC Berkeley 1963, MIT 1977, UC Berkeley 1991
- Laureate of The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
- Owns a farm and vineyard in Napa Valley
- "Farm work clears the mind, and the vineyard is a great place to prove theorems"

伺 ト イヨト イヨト

Outline


Motivation

- Literature review
- Need to model behavior
- Applications
- Importance
- 2 Some theory
 - Decision rule
 - The random utility model
 - Questioning rationality
 - 4 Choice data
 - Case studies
 - Market shares of electrical vehicles
 - Value of time
 - Path to purchase
 - 6 Conclusion

э

()

Homo economicus

M. Bierlaire (EPFL)

22 / 82

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her outcome

Utility

$$U_n: \mathcal{C}_n \longrightarrow \mathbb{R}: a \rightsquigarrow U_n(a)$$

- captures the attractiveness of an alternative
- measure that the decision maker wants to optimize

Behavioral assumption

- the decision maker associates a utility with each alternative
- the decision maker is a perfect optimizer
- the alternative with the highest utility is chosen

M. Bierlaire (EPFL)

Modeling behavior

Attributes

	Attributes	
Alternatives	Travel time (t)	Travel cost (<i>c</i>)
Car (1)	t_1	<i>c</i> ₁
Bus (2)	t ₂	<i>c</i> ₂

3

<ロ> (日) (日) (日) (日) (日)

Utility functions

$$\begin{array}{rcl} U_1 &=& -\beta_t t_1 - \beta_c c_1, \\ U_2 &=& -\beta_t t_2 - \beta_c c_2, \end{array}$$

where $\beta_t > 0$ and $\beta_c > 0$ are parameters.

Equivalent specification

$$U_1 = -(\beta_t/\beta_c)t_1 - c_1 = -\beta t_1 - c_1 U_2 = -(\beta_t/\beta_c)t_2 - c_2 = -\beta t_2 - c_2$$

where $\beta > 0$ is a parameter.

Choice

- Alternative 1 is chosen if $U_1 \ge U_2$.
- Ties are ignored.

Choice

Alternative 1 is chosen ifAlternative 2 is chosen if $-\beta t_1 - c_1 \ge -\beta t_2 - c_2$ $-\beta t_1 - c_1 \le -\beta t_2 - c_2$ ororor $-\beta(t_1 - t_2) > c_1 - c_2$ $-\beta(t_1 - t_2) < c_1 - c_2$

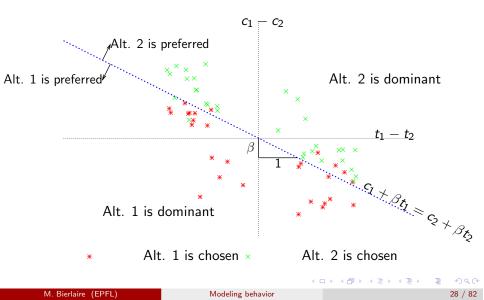
Dominated alternative

- If $c_2>c_1$ and $t_2>t_1$, $U_1>U_2$ for any eta>0
- If $c_1 > c_2$ and $t_1 > t_2$, $U_2 > U_1$ for any $\beta > 0$

26 / 82

イロト イポト イヨト イヨト 二日

Trade-off


- Assume $c_2 > c_1$ and $t_1 > t_2$.
- Is the traveler willing to pay the extra cost c₂ − c₁ to save the extra time t₁ − t₂?
- Alternative 2 is chosen if

$$-\beta(t_1-t_2) \leq c_1-c_2$$

or

$$\beta \geq \frac{c_2 - c_1}{t_1 - t_2}$$

• β is called the willingness to pay or value of time

Random utility model

Random utility

$$U_{in} = V_{in} + \varepsilon_{in}.$$

The logit model

$$P(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n e^{V_{jn}}}}$$

M. Bierlaire	

3

<ロ> (日) (日) (日) (日) (日)

Outline

Motivation

- Literature review
- Need to model behavior
- Applications
- Importance
- 2 Some theory
 - Decision rule
 - The random utility model

Questioning rationality

- Choice data
- Case studies
 - Market shares of electrical vehicles
 - Value of time
 - Path to purchase
- 6 Conclusion

э

A B A A B A

Homo economicus?

M. Bierlaire (EPFL)

31 / 82

Motivation

Rationality?

- Standard random utility assumptions are often violated.
- Factors such as attitudes, perceptions, knowledge are not reflected.

- 4 同 6 4 日 6 4 日 6

Example: pain lovers

Kahneman, D., Fredrickson, B., Schreiber, C.M., and Redelmeier, D., When More Pain Is Preferred to Less: Adding a Better End, *Psychological Science*, Vol. 4, No. 6, pp. 401-405, 1993.

- Short trial: immerse one hand in water at 14° for 60 sec.
- Long trial: immerse the other hand at 14° for 60 sec, then keep the hand in the water 30 sec. longer as the temperature of the water is gradually raised to 15°.
- Outcome: most people prefer the long trial.
- Explanation:
 - duration plays a small role
 - the peak and the final moments matter

Example: The Economist

Subscription to The Economist

Web only	@ \$59
Print only	@ \$125
Print and web	@ \$125

Example: The Economist

Subscription to The Economist

Experiment 1	Experiment 2
Web only @ \$59	Web only @ \$59
Print only @ \$125	
Print and web @ \$125	Print and web @ \$125

Modeling behavior

Example: The Economist

Subscription to The Economist

	Experiment 1	Experiment 2	
16	Web only @ \$59	Web only @ \$59	68
0	Print only @ \$125		
84	Print and web @ \$125	Print and web @ \$125	32

Source: Ariely (2008)

- Dominated alternative
- According to utility maximization, should not affect the choice
- But it affects the perception, which affects the choice.

Example: good or bad wine?

Choose a bottle of wine...

	Experiment 1	Experiment 2
1	McFadden red at \$10	McFadden red at \$10
2	Nappa red at \$12	Nappa red at \$12
3		McFadden special reserve
		pinot noir at \$60
	Most would choose 2	Most would choose 1

• Context plays a role on perceptions

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

Experiment 1	Experiment 2
# resp. = 152	# resp. = 155
Treatment A:	Treatment C:
200 people saved	400 people die
Treatment B:	Treatment D:
600 people saved with	0 people die with prob.
prob. 1/3	1/3
0 people saved with prob.	600 people die with prob.
2/3	2/3

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

	Experiment 1 # resp. = 152	Experiment 2 # resp. = 155	
72%	Treatment A: 200 people saved	Treatment C: 400 people die	22%
28%	Treatment B: 600 people saved with prob. 1/3 0 people saved with prob. 2/3	Treatment D: 0 people die with prob. 1/3 600 people die with prob. 2/3	78%

Source: Tversky & Kahneman (1986)

・ロン ・四 と ・ 回 と ・ 日 と

Example: to be free

Choice between a fine and a regular chocolate

	Experiment 1	Experiment 2
Lindt	\$0.15	\$0.14
Hershey	\$0.01	\$0.00
Lindt chosen	73%	31%
Hershey chosen	27%	69%

Source: Ariely (2008) Predictably irrational, Harper Collins.

Modeling behavior

Operational models

Behavioral aspects

- Attitudes
- Habits
- Perceptions
- Social norms
- etc.

Modeling framework

- Random utility
- Latent variables

Data

- Choice data
- Psychometrics

Outline

Motivatio

- Literature review
- Need to model behavior
- Applications
- Importance

2 Some theo

Decision rule

Choice data

- Case studies
 - Market shares of electrical vehicle

(日) (同) (三) (三)

- Value of time
- Path to purchase
- Conclusion

Choice data

Revealed preferences

- actual choice observed
- in real market situations
- Example: scanner data in supermarkets

Stated preferences

- hypothetical situations
- attributes defined by the analyst

通 ト イヨ ト イヨト

Questionnaires

• Data about the respondent

イロト イヨト イヨト イヨト

- Choice data
- Revealed preferences
- Stated preferences

æ

Data: example of a questionaire

Situation de choix 4 de 5

Vous avez ici la description de votre véhicule actuel ainsi que celle de véhicules similaires, thermique et électrique, de la marque Renault. Compte tenu des caractéristiques de chacun de ceux-ci, laquelle des trois solutions choistriez-vous, si vous deviez changer de volture aujourd'hui ?

Les valeurs indicatives de leasing sont calculées sur la base d'un apport initial de 20%, d'un kilométrage annuel de 10'000 km et d'une durée de financement de 48 mois.

Caractéristiques	Votre véhicule	Véhicule thermique Renault	Véhicule électrique Renaul
Marque	SEAT	RENAULT	RENAULT
Modèle	LEON	MEGANE	FLUENCE
Carburant	Diesel	Diesel	Electricite
Prix d'achat (en CHF)	37510	42739	34008
Prime du gouvernement (en CHF)	0	0	0
Prix total à l'achat (en CHF)	37510	42739	34008
OU : Prix mensuel du leasing (en CHF)	402	435	404
Coûts d'entretien (en CHF par 30'000 km)	850	850	425
Coût en carburant/électricité par 100 km (en CHF)	9.65	10.8	3.55
Leasing de la batterie (en CHF par mois)	0	0	105

0

M. Bierlaire (EPFL)

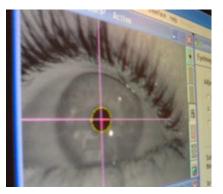
Smartphones

- GSM, GPS
- Accelerometer
- WiFi
- Bluetooth
- Ambient sound
- And more...

イロン イヨン イヨン イヨン

46 / 82

Scanner data


• Detailed purchase information

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Personalized

Eye tracking

- Where do people look?
- Used in marketing research
- Used in driving safety research
- Relevant for pedestrian models

(日) (同) (三) (三)

Data: eye tracking

Movie: Nestlé data collection

M. Bierlaire (EPFL)

49 / 82

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Outline

1 Motivatio

- Literature review
- Need to model behavior
- Applications
- Importance

Some theo

• Decision rule

Questioning rationality

Choice dat

- 5 Case studies
 - Market shares of electrical vehicle

(日) (同) (三) (三)

- Value of time
- Path to purchase

Conclusion

Market shares of electrical vehicles

Glerum, A., Stankovikj, L., Thmans, M., and Bierlaire, M. (to appear) Forecasting the demand for electric vehicles: accounting for attitudes and perceptions, *Transportation Science* (accepted for publication on May 29, 2013)

Objectives

Demand analysis for two electrical vehicles: Zoe & Fluence (Renault)

Sample

Target groups

Sampling from

- Recent buyers
- Prospective buyers
- Renault customers

Everybody from

- Pre-orders
- Z. E. newsletter

Sampling protocol: representative for

- 3 language regions of Switzerland (German, French, Italian)
- Gender
- Age category (18-35, 36-55, 56-74)

Sample

High response rate - possibility to segment

C	Cont	Phase I		Phase II		Phase I vs phase II	
Group name	Sent	Number	Rate	Number	Rate	Rate	
Recent buyers	2005	150		141		94.0%	
Prospective buyers	3006	151	151 10.0% 141 9.4%		9.4%	93.4%	
Renault customers	1000	145	14.5%	120	12.0%	82.8%	
Pre-orders	42	23	54.8%	19	45.2%	82.6%	
Z.E. newsletter	656	197	30.0%	172	26.2%	87.3%	
Total	4704	666	14.2%	593	12.6%	89.0%	

æ

<ロ> (日) (日) (日) (日) (日)

Sample

Unbalanced sample (gender): need for corrections

Variable	Level	Targeted rate	Rate phase I	Rate phase II
Language	German	72.5%	67.3%	67.8%
	French	23.0%	27.2%	26.6%
	Italian	4.5%	5.6%	5.6%
Gender	Male	49.4%	74.0%	74.2%
	Female	50.6%	26.0%	25.8%
Age category	18-35 years	33.6%	23.0%	21.8%
	36-55 years	41.6%	51.8%	52.6%
	56-74 years	24.8%	25.2%	25.6%

æ

イロト イヨト イヨト イヨト

Survey

Phase I

- Characteristics of car(s) of respondents household
- Socio-economic information
- Mobility habits

Phase II

- Opinions and perceptions on topics related to EV
- Choice situations
- Willingness-to-pay
- Interest in additional services

- 4 目 ト - 4 日 ト - 4 日 ト

Design of the choice experiment

EV variable		Level 1	Level 2	Level 3	Level 4
Purchase price	< 55 KCHF	(P _{gasoline} + 5'000) * 0.8	(P _{gasoline} + 5'000) * 1	(P _{gasoline} + 5'000) * 1.2	(a)
	≥ 55 KCHF	(P _{Mégane} + 5'000) * 0.8	(P _{Mégane} + 5'000) * 1	(P _{Mégane} + 5'000) * 1.2	(#)
Governme	ntal	- 0 CHF	- 500 CHF	- 1'000 CHF	- 5'000 CHF
Cost of fuel/electricity for 100 km		1.70 CHF	3.55 CHF	5.40 CHF	5 7 8
Battery lease		85 CHF	105 CHF	125 CHF	172

æ

<ロ> (日) (日) (日) (日) (日)

Segmentation

A priori higher interest for EV and/or Renault

- Pre-orders (1)
- Subscribers of the Z.E. newsletter (2)

A priori interest in Renault

• Renault customers (3)

No a priori interest for EV and/or Renault

- Recent buyers (4)
- Prospective buyers (5)

.

Model specification

э.

・ロト ・聞ト ・ヨト ・ヨト

Parameter estimates

Utilities	Competitor – Gasoline (CG)	Renault – Gasoline (RG)	Renault – Electric (RE)
-0.252			High operating cost · Fluence
-0.778	-	-	High operating cost · Zoé
-0.447	2	÷	Medium operating cost · Zoé
-0.205*	20	2	High battery lease
-0.0539**	2	-	Medium battery lease
0.73	2	2	High incentive
0.0803**	-		Medium incentive
-0.00224**	-	-	Low incentive

イロト イヨト イヨト イヨト

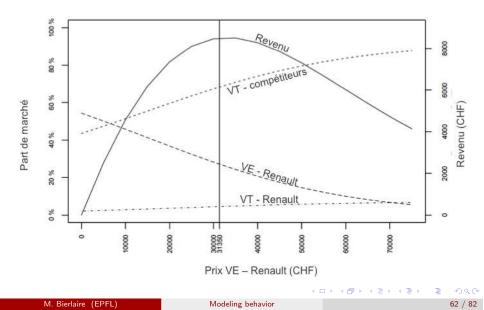
Utilities	Competitor – Gasoline (CG)	Renault – Gasoline (RG)	Renault – Electric (RE)
-0.0212**	Prix CG	-	-
-0.211	2	Price RG · TG1245	8
-0.598	-	Price RG · TG3	-
-0.404	2	2	Price RE · TG12
-1.00	-		Price RE · TG3
-0.628	51	-	Price RE · TG45
-0.049**	Operating cost gasoline	Operating cost gasoline	-

Parameter estimates

Utilities	Competitor – Gasoline (CG)	Renault – Gasoline (RG)	Renault – Electric (RE)
-0.279	PT · TG1245	-	2
-0.552	2	PT · TG1245	8
-1.85	PT · TG3	-	-
-1.07	20	PT · TG3	
-0.217	Family with children	ž	12
0.0454**	5	Family with children	7
-0.25	Income		-
-0.297	21	Income	12

Utilities	Competitor – Gasoline (CG)	Renault – Gasoline (RG)	Renault – Electric (RE)
-0.172	Nb cars · TG1245	2	-
-0.157	-	Nb cars · TG1245	
-0.384**	Nb cars · TG3		
-0.729	2	Nb cars · TG3	2
0.335	French	-	-
0.0876**	5	French	
0.0124	Age	-	-
-0.00187**	-	Age	14

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・


Parameter estimates

Utilities	Competitor – Gasoline (CG)	Renault – Gasoline (RG)	Renault – Electri (RE)	
1.97	TG12	-	4	
1.04	2	TG12	8	
-0.635	TG3			
2.45	22	TG3	2	
-2.12	1	-	-	
-1.67	-	1	27	

3

イロン イヨン イヨン イヨン

Market shares and revenues

Outline

Motivatio

- Literature review
- Need to model behavior
- Applications
- Importance

Some theo

• Decision rule

Questioning rationality

Choice dat

- 5 Case studies
 - Market shares of electrical vehicle

(日) (同) (三) (三)

- Value of time
- Path to purchase

Conclusion

Axhausen, K., Hess, S., Koenig, A., Abay, G., Bates, J., and Bierlaire, M. (2008)

Income and distance elasticities of values of travel time savings: new Swiss results, *Transport Policy* 15(3):173-185.

Data collection

- Source for recruitment: survey "Kontinuierliche Erhebung zum Personenverkehr" (KEP) by SBB/CFF
- Stated preferences
- Questionnaire designed based on a real reference trip
- Three parts:
 - SP mode choice (car / bus or rail)
 - SP route choice (current mode or alternative mode)
 - Socio-demographics and information about the reference trip

Mode choice car - rail (main study version)

Travel costs:	18 Fr.	Travel costs:	23 Fr.
Total travel time:	40 minutes	Travel time:	30 minutes
congested:	10 minutes	Headway:	30 minutes
uncongested:	30 minutes	No. of changes:	0 times

\leftarrow Your choice \rightarrow		
	\leftarrow Your choice \rightarrow	\leftarrow Your choice \rightarrow

Route choice rail (main study version)

Travel costs:	20 Fr.	Travel costs:	23 Fr.
Travel time:	40 minutes	Travel time:	30 minutes
Headway:	15 minutes	Headway:	30 minutes
1. Bierlaire (EPFL)	1 timee Modelir	No. of chances:	0 timee

Number of observations (1225 individuals)

	Business	Commuters	Leisure	Shopping	Total
Mode : car/bus	6	162	186	126	480
Mode : car/rail	426	1716	2538	1104	5784
Route : bus for bus users	9	405	450	342	1206
Route : car for car users	156	846	1176	660	2838
Route : rail for car users	126	594	837	504	2061
Route : rail for rail users	324	1008	1881	288	3501
Total	1047	4731	7068	3024	15870

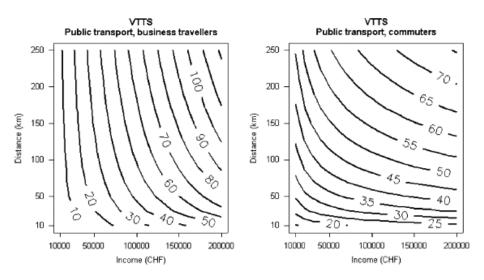
æ

ヘロア ヘロア ヘビア・

Explanatory variables

- travel time
- travel cost
- level of congestion (car)
- frequency (TC)
- number of transfers (TC)
- trip length
- income

- inertia
- car availability
- sex
- 1/2-fare CFF
- general subscription


通 ト イヨ ト イヨト

trip purpose

	Business	Commute	Leisure	Shopping
Time TC (CHF/h)	49.57	27.81	21.84	17.73
Time car (CHF/h)	50.23	30.64	29.20	24.32
Headway (CHF/h)	14.88	11.18	13.38	8.48
CHF/transfer	7.85	4.89	7.32	3.52

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

э

Value of time varies (namely) with

- transportation mode,
- trip purpose,
- income,
- trip length.

通 ト イヨ ト イヨト

Path to purchase

Outline

1 Motivatio

- Literature review
- Need to model behavior
- Applications
- Importance

Some theo

Decision rule

Questioning rationality

Choice dat

- 5 Case studies
 - Market shares of electrical vehicle

(日) (同) (三) (三)

- Value of time
- Path to purchase

Conclusion

Path to purchase: the case of ice-cream

Collaboration Nestlé-EPFL

- 2006–2008
- Nestlé
 - Nestlé Research Center
 - Ice cream Business Unit
- EPFL
 - Transport and Mobility Laboratory (Prof. Bierlaire)
 - Signal Processing Laboratory (Prof. Thiran)

Path to purchase

Path ro purchase

Project

- Impact of the stimuli on the consumers behavior
- Example: design of an ice cream board

イロン イヨン イヨン イヨン

Data collection

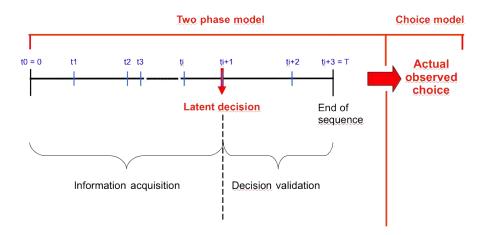
Eye tracking

<ロ> (日) (日) (日) (日) (日)

臣

Data processing

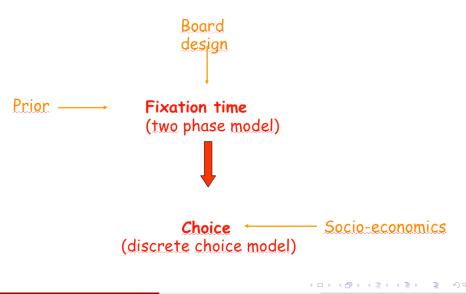
From raw video to numerical data


- Movie: Original video
- Movie: Correct distortions
- Identify locations

э

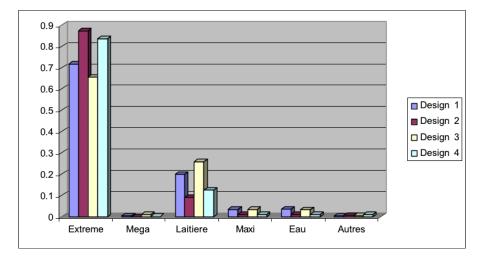
- 4 週 ト - 4 三 ト - 4 三 ト

Path to purchase


The model

э.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・


The model

M. Bierlaire (EPFL)

77 / 82

Results

3

ヘロト 人間 ト 人 ヨト 人 ヨトー

Outline

- I iterature review
- Need to model behavior
- Applications
- Importance

Decision rule

- The random utility model

- - Market shares of electrical vehicle

(日) (同) (三) (三)

- Value of time
- Path to purchase

Conclusion

Behavioral models

- Individual choice model
- Disaggregate market segments
- Flexible specification
- Quantitative and qualitative variables
- Usage of revealed and stated preferences data
- Wide range of applications
- Can account for subjectivity (attitudes and perceptions)

Short course: Discrete Choice Analysis: Predicting Demand and Market Shares

March 23 – 27, 2014

- Ecole Polytechnique Fédérale de Lausanne
- Prof. Ben-Akiva (MIT)
- Prof. Bierlaire (EPFL)
- Prof. McFadden (UC Berkeley)
- Prof. Walker (UC Berkeley)

- 4 同 6 4 日 6 4 日 6

• transp-or.epfl.ch/dca