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Abstract

The properties of poverty measures based on absolute poverty lines are well-known. Their prop-
erties have been extensively studied in the model proposed by Sen (1976). In contrast, the properties
of relativist poverty measures – measures based on non-absolute poverty lines – have never been
rigorously studied. This is not merely a theoretical issue: relativist measures do provide highly de-
batable poverty comparisons. This becomes increasingly problematic as relativist poverty measures
are more and more used by policy makers. This paper proposes an extension of Sen’s model designed
for the study of relativist poverty measures. Several results show that classical properties have dif-
ferent implications in the extended model and in Sen’s model. Finally, the paper characterizes an
index specifically designed for non-absolute poverty lines (Decerf, 2015a). This result provides the
first characterization of a relativist poverty measure.
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1 Introduction

There are two different approaches to income poverty measurement: the absolute approach and the
relativist approach. In the former approach, the poverty line below which an individual is considered as
poor is absolute. The threshold of an absolute line does not depend on standards of living. This is for
instance the approach underlying the extreme poverty line of the World Bank, set at 1.25 $ per person
per day (Ravallion et al., 2009). The nominal amount associated to an absolute line may depend on
purchasing power and inflation, but this amount corresponds to a fixed income in real terms. Typically,
this fixed amount is defined from the price of a reference bundle of necessities.

Critics against the absolute approach emerged a couple of decades ago. Townsend (1979) and his
followers argue that an individual whose income is not sufficient to engage in the everyday life of her
society should be considered as poor. In their views, any individual whose income is too far away from her
society’s income standard is at risk of social exclusion and considered as relatively poor.1 The relativist
approach is based on poverty lines whose income threshold depends on the income standard. A famous
example are relative lines whose income threshold corresponds to a given fraction of mean or median
income.

Historically, official poverty measures used to be absolute measures. Yet, this domination is now
challenged by relativist measures, which gained ground over the past decades. By the end of last century,
official poverty measures were, in most developed countries, relative measures. Lately, hybrid poverty
measures – which combine the absolute and relative aspects of income poverty – emerged in the specialized
literature and found their way into the reflections held by policy makers (World Bank, 2015; European
Commission, 2015).2

The increasing use of relativist poverty measures raises questions because we do not understand well
how these measures compare poverty across different income distributions. Surprisingly, the properties
of relativist measures have never been rigorously studied. This gap is all the more surprising that the
properties of absolute measures have been extensively studied. Sen (1976) initiates the literature on
income poverty measures. Sen distinguishes two components defining a poverty measure: the poverty
line and the index. The index aggregates the contributions to poverty of all individuals in a distribution
and, therefore, allows ranking different income distributions. The novelty of Sen is to propose a model
allowing to study the properties inherent to these indices. Most of these properties define particular
distributional changes that either should have no consequences for poverty or should unambiguously
increase poverty. For instance, one such property is that poverty should increase when the income of a
poor individual is reduced.

Sen’s model is designed to study the properties that an index has when used in combination with an
absolute line. Any absolute measure automatically inherits the desirable properties predicted for its index
in Sen’s model. Therefore, we can be confident that the poverty comparisons obtained from absolute
measures are meaningful. The problem is that a relativist measure need not inherit the properties
predicted for its index in Sen’s model. Most poverty indices have been designed for the construction
of absolute measures. Yet, virtually all relativist measures are constructed using these indices. As a
result, the poverty comparisons obtained from such a relativist measure may be counterintuitive and
controversial.

As shown in the literature review, this is not merely a theoretical problem. Relativist measures do
lead to extremely debatable judgments. For instance, they may consider that decreasing the income of
a poor individual leads to an unambiguous poverty reduction. Another issue is that they often attribute
excessive importance to the relative aspect over the absolute aspect of income poverty (Decerf, 2015a).
The major relativist measures systematically lead to negative evaluations of unequal growth processes.
However, if the income of an individual is “sufficiently” small, one may argue that her situation improves
as her income increases even if the other individual’s income increase faster. Also, as happened in New-
Zealand (Easton, 2002), relativist measures may deem that regressive policies – whose unique impact is
to transfer income from the middle class and the poor to the rich – are poverty reducing.

In this paper, I investigate the properties of relativist poverty measures in three steps. First, I propose
an extension of Sen’s model with which the properties of relativist measures may be rigorously studied.
The novelty is the introduction of an ethical ordering. This new object is a form of other-regarding
preferences (Bolton, G., Ockenfels, 2000; Fehr and Schmidt, 1999) inspired from the Behavioral literature.
Like other-regarding preferences, the ethical ordering defines the trade-offs made between the absolute

1 See Ravallion (2008) for a review of the normative foundations of the relativist approach to poverty measurement.
2 In 2011, the US Census Bureau released the Supplemental Poverty Measure, whose aim is to complement the US

official absolute poverty measure. This new measure is based on a relativist poverty line.
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and relative aspects of an individual’s situation. Unlike other-regarding preferences, the ethical ordering
does not correspond to the concerned individual’s views but is rather the judgment of a moral observer.

Second, I adapt the main properties studied in Sen’s model to the extended model and derive the
constraints that they place on acceptable indices. In particular, I generalize the celebrated additive
separability result of Foster and Shorrocks (1991). Their result implies that indices should aggregate the
contributions to poverty of all individuals in a distribution by summing these contributions. In Sen’s
model, the contribution of an individual only depends on her level of income. The additive separability
result derived in the extended model shows that an individual’s contribution may also depend on the
relative aspects of her income. Other results derive conditions under which indices satisfy key properties.

Finally, I fully characterize in the extended model a recently proposed index (Decerf, 2015a). Any rel-
ativist measure using this index automatically inherits from its properties. Hence, this result constitutes
the first characterization of a relativist poverty measure.

The paper is organized as follows. I provide a critical review of the poverty measurement literature
in section 2. I present the extension of Sen’s model in section 3. I adapt the classical properties to
the extended model and study their implications in section 4. I fully characterize a particular index in
section 5. I make some concluding remarks in section 6.

2 Literature review

The literature on income poverty measurement studies indicators that rank income distributions as a
function of their poverty. These indicators are called poverty measures. Any poverty measure is composed
of two elements: a poverty line and an index. A poverty line specifies the income threshold below which
an individual is considered as poor. An index aggregates the contributions to poverty of all individuals
in a distribution. In his groundbreaking paper (Sen, 1976), Sen proposes a model allowing to study the
properties inherent to these indices.

In this section, I shortly present Sen’s model, the different types of non-absolute poverty lines, the
main proposals of poverty measures integrating relativist considerations and expose the key reasons why
Sen’s model is not adequate to study the properties of relativist measures.

2.1 Sen’s model

Let an income distribution y := (y1, . . . , yn) be a list of non-negative incomes sorted in non-decreasing
order y1 ≤ · · · ≤ yn. Letting N := {n ∈ N|n ≥ 3}, the set of income distributions is

Y := ∪n∈N{y ∈ R
n
+ | yi ≤ yi+1, ∀i = 1, . . . , n− 1}.

The number of individuals in distribution y is denoted by n(y). The poverty threshold is denoted by
z∗ ∈ R++. Individual i qualifies as poor if yi < z∗. The number of poor individuals is denoted by q(y).
As income distributions are sorted, if i ≤ q(y) then individual i is poor in distribution y. Let a poverty
index be a real-valued function P : Y × R++ → R representing a complete ranking on Y . For any two
distributions y, y′ ∈ Y and any poverty threshold z∗ ∈ R++, there is strictly more poverty in y than in
y′ if P (y, z∗) > P (y′, z∗), and weakly more if P (y, z∗) ≥ P (y′, z∗).

The literature initiated by Sen (1976) aims at deriving poverty indices from a set of desirable prop-
erties. These properties are encapsulated into axioms. The major results derived from Sen’s model are
reviewed in Zheng (1997). A key result is the characterization of additive indices. Any index satisfying
five basic properties must be ordinally equivalent to an additive index (Foster and Shorrocks, 1991):

P (y, z∗) :=
1

n(y)

q(y)
∑

i=1

d(yi, z
∗), (1)

where function d : R+ × R++ → [0, 1] is non-increasing in yi. Function d returns the contribution to
poverty of an individual earning income yi when the threshold is z∗. Given threshold z∗, this contribution
only depends on own income. Very few restrictions are imposed on function d and, therefore, this family
is very broad. Yet, most empirical applications use indices belonging to the Foster-Greer-Thorbecke
(FGT) subfamily, which has an exponential expression for the contribution (Foster et al., 1984):

PFGT (y, z∗) :=
1

n(y)

q(y)
∑

i=1

(

1−
yi
z∗

)α

. (2)
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The FGT family has a unique parameter α ∈ [0,∞), which can be interpreted as poverty aversion.
This family admits the Head-Count Ratio (HC) and the Poverty Gap Ratio (PGR) as particular cases
when α = 0 and α = 1 respectively. Besides FGT indices, many other indices have been proposed and
characterized, e.g. by Kakwani (1980), Chakravarty (1983) or Duclos and Gregoire (2002).

2.2 Different types of poverty lines

Income poverty measures may be classified into two main categories: absolutist and relativist measures.
This classification depends on the type of poverty line used to construct the measure. An absolutist
measure is based on an absolute line and a relativist measure on a non-absolute line.

The definition of a poverty line requires an additional bit of notation. Let S : Y → R+ be a function
returning the income standard associated to distribution y. Typical income standards are the mean or
the median income. For the sake of notational simplicity, the income standard associated to y is denoted
by y := S(y). A poverty line is defined by its threshold function z : R+ → R+, a continuous function
specifying the income threshold z(y) associated to distribution y.

A poverty line is absolute if its threshold function is flat. That is, its image does not depend on the
income standard.3 In contrast, the threshold of a non-absolute poverty line may evolve with the income
standard. Typically, non-absolute lines associate a larger poverty threshold to distributions featuring a
larger income standard. This implements the relativist view that an individual’s relative situation matters
to her well-being.4 Relative lines are a famous example of non-absolute lines. The threshold of a relative
line evolves as a constant fraction of the income standard. Relative lines only capture the relative aspect
of poverty as their threshold tends to zero in low-income distributions. If that is judged non-satisfactory,
an alternative is to use hybrid lines, which arbitrate the absolute and relative aspects of poverty. Foster
(1998) proposes hybrid lines that feature a constant income elasticity.5 The income elasticity of a poverty
line is defined as the elasticity of its threshold with respect to the statistic measuring standard of living.
This income elasticity can be interpreted as the extent to which poor individuals should share the benefits
of economic growth. Absolute lines have an income elasticity of zero and relative lines have an income
elasticity of one, representing two extreme views on this parameter.6 Ravallion and Chen (2011) propose
weakly relative lines, whose income threshold is constant for low-income distributions and has a constant
derivative for high-income distributions. As a result, the income elasticity of weakly relative lines is zero
for low-income distributions and then increases with standards of living, tending ultimately to a value
of one.

2.3 Relativist measures

The most common relativist measures are relative measures, which combine a relative line with an
FGT index.7 It is well-known that relative measures completely ignore the absolute aspects of income
poverty. Multiplying all incomes in a distribution by a common factor leaves relative measures unchanged.
Following the premise that both the absolute and relative aspects of income matter for individual well-
being, defenders of the relativist approach have proposed measures combining both aspects.

Some hybrid measures simply combine an hybrid line with an FGT index (Chen and Ravallion, 2013).
Another approach proposed by Atkinson and Bourguignon (2001) is to consider two poverty lines, one
absolute and one relative, and combine them with an index aggregating the gaps with respect to these
two lines. Such index aggregates the absolute and relative aspects of income poverty at individual level,
before aggregating the contributions to poverty of all individuals in a distribution. The two lines and
the index jointly define a poverty measure. Anderson and Esposito (2013) follow this approach. Inspired
by Atkinson and Bourguignon (2001), Decerf (2015a) proposes an index aggregating both aspects while
always providing a minimal priority to absolutely poor individuals. Unlike all other proposals, this
index is such that absolutely poor individuals always contribute more to poverty than relatively poor
individuals. This property is presented below in more details.

3 The threshold of an absolute line is often defined from the cost of a particular bundle of goods. The line is then
“anchored” in that bundle and its threshold is constant in real terms. The nominal threshold of an absolute line may
evolve over time with inflation or vary from one country to another as a function of purchasing power. To be sure, all
incomes in this paper are expressed in real terms.

4See Ravallion (2008) for a normative discussion of the relativist view.
5 For a given income standard, letting zr denote a relative line and za the threshold of an absolute line, the hybrid

threshold is given by z(y) =
(

za
)1−ρ(

zr(y)
)ρ

, where ρ ∈ [0, 1] denotes the line’s constant elasticity.
6 Madden (2000) estimates empirically an upper-bound for the value of this parameter using Irish data.
7 Relative measures can also be constructed using indices outside the FGT family. Nevertheless, I focus only on FGT

indices for ease of exposition and given their prevalence in empirical applications.
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2.4 Properties of relativist measures

The literature initiated by Sen (1976) studies the properties of poverty indices. As Sen’s model is based
on a fixed poverty threshold, absolutist measures automatically inherit the properties of their index.
Unfortunately, this is not the case of relativist measures. The reason is that Sen’s model disregards
the endogenous link that a non-absolute poverty line defines between an income distribution and its
associated poverty threshold. Sen’s model ranks income distributions for an exogenously given poverty
threshold. As a consequence, the properties of relativist measures are to a great extent still unknown.
Even if they are widely used in practice, no relativist measure has ever been characterized. Only Decerf
(2015a) proposes a partial characterization that accounts for this endogenous link.

I illustrate that relative measures need not inherit from the properties of their index. The two
properties I investigate are satisfied by FGT indices (Foster and Shorrocks, 1991). First, Focus requires
that the index is not sensitive to the income level of non-poor individuals. Second, Monotonicity in
Income requires that decreasing the income of some poor individual never leads to an unambiguous
poverty reduction.8

Relativist measures violate Focus if the income standard depends on the income of non-poor indi-
viduals. Relativist measures may violate Monotonicity in Income if the income standard depends on
the income of poor individuals. If the income standard is mean income, then both properties may be
violated. If the income standard is median income and the poverty line is relative, then only Focus is
violated.

Table 3 illustrates that the HC violates both properties when the relative poverty line is mean-
sensitive. Distribution B is constructed from distribution A by decreasing the income of the poorest
individual. Yet, the value taken by the HC based on a relative line is strictly larger in A than in B,
which violates Monotonicity in Income. Distribution C is constructed from distribution B by increasing
the income of the non-poor individual 3. The value taken by the HC is strictly larger in C than in B,
which violates Focus .

Table 1: The Head-Count Ratio based on a mean-sensitive line violates Focus and Monotonicity in
Income.

y1 y2 y3 zr(y) HC(y)

Distribution A 1.1 2 9 2.02 2
3

Distribution B 0.6 2 9 1.93 1
3

Distribution C 0.6 2 9.5 2.02 2
3

Note: The threshold of the relative line zr is 50% of mean income y.

The violation of Focus raises important normative questions. For instance, relative measures based on
median-sensitive lines are plagued by several paradoxes (de Mesnard, 2007). In practice, policies inducing
regressive balanced transfers from the middle class to the rich may decrease median income. As a result,
the value taken by median-sensitive measures may unambiguously decrease, even if such policies decrease
the income of poor individuals. Easton (2002) emphasizes that this scenario happened in New-Zealand
between 1981 and 1992. What is more, some institutions used the drop in the median-sensitive measure
to argue that the regressive policies were a success. This illustrates that the limitations of relativist
measures constructed with an index designed for absolute measures are not merely theoretical issues.

Relativist measures may also provide debatable poverty comparisons due to the unintended impli-
cations that some robustness properties have in Sen’s model. I illustrate this using hybrid measures.
FGT indices satisfy Scale Invariance. This robustness property is often defended on the grounds that it
renders the currency units in which income is measured irrelevant. Formally, Scale Invariance requires
the index not to be affected when the income of all individuals are multiplied by the same factor as the
income threshold.9 In Sen’s model, Scale Invariance implies that an individual’s contribution to poverty
only depend on her normalized income yi

z∗ , her income divided by the income threshold. As a result,
hybrid measures may implicitly consider that an absolutely poor individual in a low-income distribution
is better-off than another individual who is only relatively poor when the latter lives in a high-income
distribution (Decerf, 2015a). In that sense, hybrid measures deny a minimal priority to absolutely poor

8 These two axioms are formally defined in Appendix 7.1.1.
9 This axiom is formally defined in Appendix 7.1.1.

5



(a) (b)

z
m

ȳ
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Figure 1: Illustration of the domain Z of poverty lines.
Note: (a) Flat line. (b) Weakly relative line. (c) Generic line in Z.

individuals.

3 The model

I showed in Section 2 that the model of Sen (1976) is not suited for the study of income poverty measures
based on non-absolute poverty lines. In this section, I extend Sen’s model by the introduction of a new
object, which I call an Ethical Ordering. This object allows the extended model to account for the
endogenous link between an income distribution and its associated poverty threshold.

The basic notation is identical to the one presented above. I first present the restrictions imposed on
poverty lines, then I introduce the concept of an ethical ordering and define poverty indices.

3.1 Poverty lines

Let mean income, denoted by y :=
∑

yi

n , be the income standard to which the poverty line is sensitive.10

A poverty line is defined by its threshold function z : R+ → R+, a continuous function specifying the
income threshold associated to y. The set Z of acceptable poverty lines, illustrated in Figure 1, is defined
by three restrictions.

Non-zero Threshold requires the poverty threshold to be everywhere strictly positive. Meeting one’s
basic needs has a positive cost, even in low-income societies. Relative lines are hence excluded. This
restriction is necessary for Theorem 4 to hold. Nevertheless, the set Z contains lines that are arbitrarily
close to relative lines. Furthermore, when combined with a relative line the index characterized in
Theorem 6 corresponds to the PGR, and any measure based on the PGR and a mean-sensitive relative
line satisfies all the poverty axioms presented.

Line restriction 1 (Non-zero Threshold).
For all y ≥ 0, we have z(y) > 0.

Positive Slope less than One constrains the slope of the poverty line, defined by its first order derivative
∂z
∂y .11 Strictly decreasing lines and lines exhibiting an excessive sensitivity to the mean are hence excluded.

Line restriction 2 (Positive Slope less than One).

For all y ≥ 0, the slope ∂z(y)
∂y belongs to [0, 1].

Flat Line in Poor Societies requires that the line be flat, i.e. its slope is equal to zero, for distributions
whose income standard is “low”. Formally, a distribution has a “low” income standard if y < z(y). The
total income in such a distribution is so small that all individuals would be poor if this total income
was redistributed equally. Hence, any distribution with such mean income contains at least one poor
individual.

Line restriction 3 (Flat Line in Poor Societies).

For all y ≥ 0 with y < z(y) we have ∂z(y)
∂y

= 0.

10 Median-sensitive lines are often used in practice. See Decerf (2015b) for a discussion on the choice of the income
standard and its implications for the robustness of the results.

11 At points at which z is non-differentiable, its slope is defined to be the limit from the right of its first order derivative.
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Two characteristics of the line will prove useful. First, the line’s intercept, denoted by zm, is the
minimal value taken by the poverty threshold:

zm := z(0).

Second, the maximal value of mean income at which the income threshold is equal to the intercept
is denoted by ym:

ym := max{y ≥ 0 | z(y) = zm}.

A line z ∈ Z is flat if z(y) = zm for all y ≥ 0. The value of ym is not well-defined for flat lines. For flat
lines, I adopt the convention that ym = zm.

Finally, I define weakly relative lines (Ravallion and Chen, 2011) that constitute a particular subset
of Z, illustrated in Figure 1.b.

Definition 1 (Weakly relative line).
The poverty line z ∈ Z is weakly relative if

z(y) = max{zm, a+ sy},

where zm ∈ R++, a ∈ R, s ∈ [0, 1] and zm(1− s) ≥ a.12

If a weakly relative line is such that a = 0, then the line is the upper contour of two lines: an absolute
and a relative. Alternatively, if a weakly relative line is such that s = 0, then it is a flat line.

3.2 Ethical ordering

According to proponents of the relativist approach, the well-being of a poor individual is also affected
by her relative situation. Atkinson and Bourguignon (2001) suggest to aggregate the absolute and
relative aspects of income poverty at individual level, before aggregating the poverty contributions of
all individuals. To perform the first aggregation, I define a new object, which I call an ethical ordering
(EO). An EO is an ethical observer’s preferences relation over individual situations. Introducing an EO
in the model allows distinguishing the comparisons of individual situations from the aggregation of the
contributions to poverty over the whole population.

The bundle consumed by an individual summarizes the absolute and relative aspects of her income
and is therefore two-dimensional. The set of bundles for a generic individual i is

X := {(yi, y) ∈ R+ × R++}.

An EO, denoted by ≽, is an ordering on the space of bundles.

Definition 2 (Ethical Ordering).
An ethical ordering ≽ is a continuous ordering on X.13

Formally, an EO is a form of other-regarding preferences, as defined by the Behavioral literature
(Fehr and Schmidt, 1999; Bolton, G., Ockenfels, 2000). There is a key difference between other-regarding
preferences and an EO. The former are the preferences held by an individual over her own situation,
whereas the latter summarizes the normative judgments formed by an external observer when comparing
the well-being associated to different individual situations.

I draw the reader’s attention on an important terminology aspect. In this paper, the word well-being
has nothing to do with the utility experienced by an individual. Rather, I use well-being to refer to a
cardinalization of the EO considered.

The set R of acceptable EOs is defined by three restrictions. This set is illustrated in Figure 2, which
shows three different EOs. Graphically, an EO is illustrated by its associated iso-poverty map, which
is composed of iso-poverty curves. An iso-poverty curve connects all the bundles that the EO deems
equivalent in terms of well-being.

The first restriction, Strict Monotonicity up to line, requires that each EO in R has a threshold
iso-poverty curve that plays the role of a poverty line. Below its associated poverty line, the EO deems
that a larger income is an improvement. Above its poverty line, the EO deems that the level of income
is irrelevant.

12The inequality zm(1− s) ≥ a ensures that weakly relative lines meet Flat Line in Poor Societies.
13An ordering is a reflexive, transitive and complete binary relation.
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EO restriction 1 (Strict Monotonicity up to line).
There exists z ∈ Z such that for all (yi, y) ∈ X with yi = z(y), a ∈ (0, z(y)] and b > 0 we have

(yi − a, y) ≺ (yi, y) ∼ (yi + b, y).

Let Z : R → Z be the function returning the poverty line z = Z(≽) associated to ≽. For a given ≽,
the set of bundles at which individual i qualifies as poor is

Xp(≽) :=
{

(yi, y) ∈ X
⏐
⏐yi < z(y) where z = Z(≽)

}

,

The other two restrictions limit the importance of a poor individual’s relative situation in the defini-
tion of her well-being. Priority to Income below za requires that each EO in R is associated to a level
of income below which mean income is irrelevant for well-being. This level of income is interpreted as
the threshold for absolute poverty. All the EO’s iso-poverty curves are flat up to this absolute threshold.
In other words, the well-being attributed to an absolutely poor individual only depends on her own
income.14

EO restriction 2 (Priority to Income below za).
There exists za ∈ [0, zm] where z = Z(≽) such that for all (yi, y), (y′i, y

′) ∈ X with yi = y′i ≤ za we have

(yi, y) ∼ (y′i, y
′).

Priority to Income below za implies that the EO always deems that an absolutely poor individual is
worse-off than a relatively poor individual. This intuition was expressed in Atkinson and Bourguignon
(2001) and is largely shared in the population, as appeared from questionnaire studies run all over the
world (Corazzini et al., 2011).

Let Za : R → [0, zm] be the function returning the absolute threshold za = Za(≽) associated to ≽,
where zm is the intercept of Z(≽). For a given ≽, the set of bundles at which individual i qualifies as
absolutely poor is

Xa(≽) :=
{

(yi, y) ∈ Xp(≽)
⏐
⏐yi < za where za = Za(≽)

}

.

I call relatively poor any poor individual that is not absolutely poor. When no confusion is possible, z
is assumed to be the line associated to ≽ and za its absolute threshold.

Finally, Homotheticity above za requires the iso-poverty curves between the absolute threshold and
the poverty line to be homothetic. This simplifying assumption is a natural default option.15 Given that
the slope of the poverty line is smaller than one, this restriction implies that the slope of iso-poverty
curves is nowhere larger than one.16

EO restriction 3 (Homotheticity above za).

For all (yi, y), (y′i, y
′) ∈ Xp(≽)\Xa(≽), if yi−za

z(y)−za = y′
i−za

z(y′)−za , then (yi, y) ∼ (y′i, y
′).

The three EO restrictions presented strongly constrain R.17 Given a poverty line, selecting an EO
in R amounts to selecting a unique parameter: its absolute threshold. As defined above, this absolute
threshold is weakly smaller than the poverty line’s intercept. If the poverty line is not flat, then Strict
Monotonicity up to line implies that the absolute threshold is strictly smaller than the intercept.

This definition of R “conciliates” absolute and relative poverty in a specific sense. The well-being
attributed only depends on own-income below a minimal threshold za. This is true both in low and
high-income distributions. In contrast, the well-being above this threshold depends on both own-income
and the income standard.18

14 This restriction implies that EOs in R satisfy Minimal Absolute Concern, a weaker EO restriction presented in
Appendix 7.1.2. Minimal Absolute Concern limits the importance of the relative aspect of income. It requires that there
is no worse bundle than a bundle with zero income.

15 Decerf (2015b) shows that if the iso-poverty curves above za deviate too much from homotheticity, then the existence
of additive poverty indices satisfying Monotonicity in Income and Transfer is not guaranteed (Theorem 4 page 73). This
illustrates the trade-offs that may appear between EO restrictions and poverty axioms.

16 Homotheticity above za and Positive Slope less than One together imply that EOs in R satisfy Translation Mono-
tonicity, a rather weak EO restriction presented in Appendix 7.1.2. Translation Monotonicity limits the importance of the
relative aspect of income. It requires that an equal distribution of an extra amount of income always makes the individual
weakly better-off. Such judgment corresponds to the so-called “leftist” view on income poverty (see Kolm (1976)). Hence,
Translation Monotonicity implies that the “leftist” view is the maximal importance that one can give to the relative aspect.

17 Priority to Income below za and Homotheticity above za are rather strong restrictions, but as explained in footnotes
14 and 16, they can be weakened without affecting the general results of Section 4.

18 Strictly speaking, in all distributions with low standards of living (y < ym), the well-being attributed to relatively
poor individuals only depends on their level of income.
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Figure 2: Iso-poverty curves of ethical orderings.
Note: (a) EO below a flat line. (b) EO below a weakly relative line. (c) EO below a generic line.

3.3 Poverty Indices

For any ≽∈ R, the set of income distributions considered is

Y (≽) :=
{

y ∈ Y
⏐
⏐ yn ≥ z(y)

}

.

For technical reasons, this set excludes distributions for which all individuals are poor.19 Let P be the
domain on which a poverty index is defined:

P := {(y,≽)| ≽∈ R and y ∈ Y (≽)}.

A poverty index is a real-valued function P : P → R that represents, for any ≽∈ R, a complete ranking
on Y (≽). For any two (y,≽), (y′,≽) ∈ P , there is strictly more poverty in (y,≽) than in (y′,≽) if
P (y,≽) > P (y′,≽), and weakly more if P (y,≽) ≥ P (y′,≽).

This model simply extends Sen’s model by defining the domain of indices using the concept of EO
rather than using a fixed threshold z∗. Given that the EO’s definition is based on a poverty line, the EO
accounts for the endogenous link between a given distribution and its specific poverty threshold.

4 Basic properties in the extended model

Zheng (1997) reviews the basic properties imposed to poverty indices and their implications in Sen’s
model. In this section, I adapt these basic properties to the extended model and investigate their
implications.

4.1 Additive family

I extend the characterization of additive indices based on absolute lines to additive indices based on
non-absolute lines. This extended characterization requires to weaken some of the basic axioms used by
Foster and Shorrocks (1991).

An EO defines a specific way to perform individual well-being comparisons. Domination requires
poverty indices to respect the individual well-being comparisons encapsulated in the EO. It does so by
imposing a monotonicity requirement in the space of individual well-being distributions. If the well-being
of one individual increases, while the individual well-being of all other individuals do not decrease, then
poverty must decrease.

Poverty axiom 1 (Domination).
For all ≽∈ R and all y, y′ ∈ Y (≽) with n(y) = n(y′), if (y′i, y

′) ≽ (yi, y) for all i ≤ n(y), then
P (y,≽) ≥ P (y′,≽).
If in addition there is j ≤ n(y) such that (y′j , y

′) ≻ (yj , y), then P (y,≽) > P (y′,≽).

By Strict Monotonicity up to line, all bundles above the poverty line are attributed the same well-
being. Therefore, Domination implies a weak version of Focus . Weak Focus, presented in Appendix
7.1.2, requires that changes to the incomes of non-poor individuals are irrelevant to poverty only as long
as the income standard is unchanged. As a result, only the well-being of poor individuals matters and

19 This restriction on the set of distributions is necessary for Theorem 1 to hold.
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all the relative aspects of well-being are captured via the income standard. When mean income captures
the income standard, balanced transfers among non-poor individuals do not affect the poverty index.

Subgroup Consistency is a standard axiom requiring that, if poverty decreases in a subgroup while it
remains constant in the rest of the distribution, overall poverty must decline. Sen (1992) questioned the
desirability of this axiom by arguing that the incomes in one subgroup may affect poverty in another
subgroup. Foster and Sen (1997) recommend not to use this axiom when the index aims at capturing
relative aspects of income poverty. I subscribe to this point of view. The issue becomes transparent once
the channel through which one subgroup affects the other is modeled. In this model, the incomes in a
subgroup impact the mean income which affects the other poor individuals’ well-being. If the line is flat
(see Figure 2.a), the relative situation does not matter and subgroup consistency is compelling. If the
relative situation does matter, then it is not always meaningful to extrapolate the judgments made on
subgroups to the whole population. Weak Subgroup Consistency restricts such extrapolations to cases
for which the two subgroups of a population have the same mean income. Then, the well-being of an
individual is the same when considering the mean income in her subgroup or when considering the mean
income in the total population. In such cases, poverty judgments made on subgroups are relevant for
the total population.

Poverty axiom 2 (Weak Subgroup Consistency).
For all ≽∈ R and all y1, y2, y3, y4 ∈ Y (≽), if

n(y1) = n(y3), n(y2) = n(y4),

y1 = y2 and y3 = y4 and

P (y1,≽) > P (y3,≽) and P (y2,≽) = P (y4,≽),

then P ((y1, y2),≽) > P ((y3, y4),≽).

The remaining three auxiliary axioms are straightforward adaptations of their classic counterparts.
Symmetry requires that individuals’ identities do not matter. Working with sorted distributions is
therefore without loss of generality.

Poverty axiom 3 (Symmetry).
For all ≽∈ R and all y, y′ ∈ Y (≽) with n(y) = n(y′), if y′ = y · πn(y)×n(y) for some permutation matrix
πn(y)×n(y), then P (y,≽) = P (y′,≽).

Symmetry implies that the preferences over bundles of the concerned individuals are irrelevant to the
poverty index. This property generates little debate in Sen’s model where only the level of income is
relevant. If preferences are monotonic, then the property does not override individual preferences. In
the extended model, individual preferences may differ from the EO and Symmetry explicitly requires to
completely disregard them. This form of paternalism can be defended on the ground that it prevents
poverty indices from giving priority to individuals that are more other-regarding.20

Continuity requires indices to be continuous in incomes. This is important for empirical applications
in order to avoid that measurement errors have an excessive impact on poverty judgments.

Poverty axiom 4 (Continuity).
For all ≽∈ R and all y ∈ Y (≽), P is continuous in y.

Replication Invariance specifies how to compare poverty in distributions of different population sizes.
If a distribution is obtained by replicating another one several times, then the latter’s poverty equals
that of the original distribution.

Poverty axiom 5 (Replication Invariance).
For all ≽∈ R and all y, y′ ∈ Y (≽), if n(y′) = kn(y) for some positive integer k and y′ = (y, y, . . . , y),
then P (y,≽) = P (y′,≽).

20 For an illustration of the issue, consider two poor individuals living in the same society. Assume that the individual
with a larger income has preferences that are more affected by relative income than the preferences of the individual with
a smaller income. If individual preferences matter for the poverty index, it could be that the relatively richer contributes
more to poverty than the second individual. Potentially, giving an extra unit of income to the relatively richer has more
impact on poverty than giving an extra unit of income to the second individual. Such conclusion is highly debatable: as
they live in the same society, the bundle of the first individual dominates the bundle of the second individual.
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The combination of these five axioms allows to derive an extension of the additive separability re-
sult of Foster and Shorrocks (1991). Two definitions simplify its formal statement. First, a numerical
representation is a continuous function representing an EO.

Definition 3 (Numerical Representation d≽).
The continuous function d≽ : X → [0, 1] is a numerical representation of ≽ if

• for all (yi, y), (y′i, y
′) ∈ Xp(≽) we have

(yi, y) ≽ (y′i, y
′) ⇔ d≽(yi, y) ≤ d≽(y′i, y

′),

• for all (yi, y) ∈ X\Xp(≽) we have d≽(yi, y) = 0,

• for all (0, y) ∈ Xp(≽) we have d≽(0, y) = 1.

Observe that a numerical representation differs from a utility representation of the relevant EO.
The value returned by the numerical representation decreases when individual well-being increases. The
value returned by this function corresponds to the individual contribution to poverty, i.e. the opposite
of utility.

Next, additive poverty indices aggregate individuals’ well-being by summing them.

Definition 4 (Additive Poverty Index).
Index P is an additive poverty index if it is ordinally equivalent to an index P̂ : P → [0, 1] defined by

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

d≽(yi, y), (3)

where d≽ is a numerical representation of ≽.

Theorem 1 characterizes the family of additive poverty indices based on non-absolute lines.

Theorem 1 (Characterization of additive poverty indices).
The following two statements are equivalent.

1. P is an additive poverty index.

2. P satisfies Domination, Weak Subgroup Consistency, Symmetry, Continuity and Replication In-
variance.

Proof. It is easy to check that additive poverty indices satisfy these five axioms, so the proof that
statement 1 implies statement 2 is omitted. The proof of the converse implication is in Appendix 7.2.
In a nutshell, the proof shows that the result on additive separability of Gorman (1968) applies. The
crucial assumption to verify is that the index satisfies a separability property. This separability property
follows from the repeated application of Weak Subgroup Consistency. This repeated application is made
possible by the flexibility obtained from one restriction imposed on the domain Y (≽) of distributions,
namely that individual n is non-poor. After applying Theorem 1 in Gorman (1968), the remaining part
of the proof is an adaptation of Foster and Shorrocks (1991). !

The main difference with the result of Foster and Shorrocks (1991) is that an individual’s contribution
to poverty depends on both her level of income and mean income. Her contribution to poverty is returned
by a numerical representation of the relevant EO. If the poverty line is flat, then her well-being only
depends on her income and so does her contribution to poverty. Therefore, the result of Foster and
Shorrocks (1991) is nested in Theorem 1.

The validity of Theorem 1 can be extended in at least two directions.21 First, it still holds if the EO
restrictions Priority to Income below za and Homotheticity above za are replaced by the weaker restric-
tions Minimal Absolute Concern and Translation Monotonicity (defined in Appendix 7.1.2). Second, it
is possible to extend its domain of application to indices based on relative lines, if one excludes null
distributions from the domain of distributions.

21 The proof can be found in an earlier version of this paper (Decerf, 2015b).
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4.2 Two Key Fairness Axioms

Theorem 1 characterizes poverty indices that sum the contributions to poverty returned by a numerical
representation of the EO. This theorem places almost no restriction on acceptable numerical represen-
tations. Such restrictions emerge from properties that define the particular cases for which it is deemed
justified to improve the bundle of one individual at the detriment of another. I present here two key
properties of this kind, Monotonicity in Income and Transfer , and study the constraints they place on
the numerical representation.

The first property is Monotonicity in Income. Poverty indices based on non-absolute lines capture
the relative aspects of income. The increase in the income of a poor individual has opposing impacts.
On the one hand, her well-being increases as both her absolute and relative situations improve. On
the other hand, mean income increases. If the income threshold increases, then the well-being of the
other relatively poor individuals decreases.22 Moreover, some individuals who were non-poor might have
become poor. Monotonicity in Income requires that the indirect adverse impacts are dominated by the
direct impact. Hence, this property imposes that decreasing the income of some poor individual never
leads to an unambiguous poverty reduction. Observe that the larger the number of individuals, the lower
is the impact of such an income increase on mean income and, hence, on the well-being of others.

Poverty axiom 6 (Monotonicity in Income).
For all ≽∈ R and all y, y′ ∈ Y (≽) with n(y) = n(y′), if yi < y′i < z(y′) and y′j = yj for all j ̸= i, then
P (y, z∗) ≥ P (y′, z∗).

Theorem 2 provides a necessary and sufficient condition for Monotonicity in Income. This condition
links the two partial derivatives of the numerical representation. I denote by ym(≽) the mean income
ym = maxy≥0{y | z(y) = zm} where z = Z(≽) is the line associated to the EO.

Theorem 2 (Condition for Monotonicity in Income).
Let P be an additive poverty index whose numerical representation is almost everywhere differentiable. P
satisfies Monotonicity in Income if and only if for all ≽∈ R, y ≥ ym(≽), a ∈ [0, z(y)) and b ∈ (za, z(y)],
we have:23

∂2d
≽(b, y) ≤ −∂1d

≽(a, y) (4)

Proof. Consider any additive index P and any ≽∈ R. Given ≽, P satisfies Monotonicity in Income if
and only if for all y ∈ Y (≽) and i ≤ q(y) we have

∂P ((y1, . . . , yn),≽)

∂yi
≤ 0.

By the additively separable form of P , this inequality becomes by chain derivation:

∂1d
≽(yi, y) +

n(y)
∑

j=1

∂2d
≽(yj , y)∂iy ≤ 0. (5)

From the definition of the mean, we have ∂iy = 1
n(y) . Inequality (5) becomes:

∂1d
≽(yi, y) +

1

n(y)

n(y)
∑

j=1

∂2d
≽(yj, y)

︸ ︷︷ ︸

L6

≤ 0. (6)

The proof shows that (6) implies the necessary and sufficient condition linked to (4). Inequality (4) is
equivalent to:

∂1d
≽(a, y) + ∂2d

≽(b, y)
︸ ︷︷ ︸

L7

≤ 0. (7)

22 The well-being of an absolutely poor individual only depends on her level of income and is therefore not affected by
the income of other poor individuals.

23 If function d≽ is not differentiable at (a, y) or at (b, y), then I define these derivatives as

∂1d
≽(a, y) := lim

x→a+
∂1d

≽(x, y) and ∂2d
≽(b, y) := lim

x→y+
∂2d

≽(b, x).
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Necessity is proven by contradiction. If inequality (4) is violated for some values of a, b and y, then
one can construct a distribution y at which Monotonicity in Income does not hold, provided that n(y) is
large enough. Distribution y is such that one poor individual earns a, the n(y)−2 other poor individuals
earn b and the non-poor individual n(y) earns an amount computed to obtain the desired mean income.
Sufficiency is proven by showing that if there exists a distribution y at which Monotonicity in Income
does not hold, then inequality (4) is violated as well for at least a pair of poor individuals i and j in
distribution y. The detailed proof is in Appendix 7.3. !

The condition derived in Theorem 2 has strong discriminative power, as shown below in Theorem 6.
Applying the condition may seem cumbersome since it requires checking an infinity of inequalities of the
form given in (4). Nevertheless, the relationships existing between the two partial derivatives (derived in
Lemmas 2 and 3 in Appendix 7.4.1) simplify its application. In particular, if the poverty line is weakly
relative, then having inequalities (4) holding at y = ym is necessary and sufficient for Monotonicity in
Income, which brings a further simplification.24

Observe that Domination and Monotonicity in Income are logically related when the poverty line is
flat. if the line is flat, then the partial derivative of the numerical representation with respect to mean
income equals zero, and the condition of Theorem 2 is trivially verified. More generally, Domination
implies Monotonicity in Income when the line is flat. In Sen’s model, the poverty line is automatically
flat and any increase in a poor individual’s income has not adverse impact.

The second property is Transfer . Transfer requires that a Pigou-Dalton transfer taking place between
two poor individuals never unambiguously increases poverty.25 This property conserves its normative
appeal when mean income is the income standard since balanced transfers do not alter the mean. As a
result, the poverty contributions of individuals not involved in the transfer are unchanged.

Poverty axiom 7 (Transfer).
For all ≽∈ R, all y, y′ ∈ Y (≽) with n(y) = n(y′) and all λ > 0, if yj − λ = y′j > y′k = yk + λ, z(y) > yj
and y′i = yi for all i ̸= j, k, then P (y,≽) ≥ P (y′,≽).

As in Sen’s model, poverty indices satisfying Transfer are based on convex numerical representations.

Theorem 3 (Condition for Transfer).
Let P be an additive poverty index whose numerical representation is almost everywhere differentiable.
P satisfies Transfer if and only if for all ≽∈ R and all a, b ≥ 0 with a < b < zm we have:26

∂1d
≽(a, ym) ≤ ∂1d

≽(b, ym) (8)

Proof. The proof is in the Appendix 7.4. !

The relationship existing between the two partial derivatives imply that having inequalities (8) holding
at y = ym is sufficient for Transfer .

Together, Monotonicity in Income and Transfer strongly constrain acceptable numerical represen-
tations. These constraints are best illustrated by applying the conditions derived in theorems 2 and 3
to parametric families of numerical representations. In particular, Decerf (2015a) shows that these two
properties jointly characterize a unique index in a version of the Foster-Greer-Thorbecke family adapted
for the extended model.

In the next section, I present robustness properties, which constrain the functional expression of
acceptable numerical representations. In Section 5.3, I apply to this functional expression the conditions
derived in Theorems 2 and 3 and obtain sharp implications.

24 A proof for this claim is a straightforward adaptation from Step 1 of the proof of Theorem 3 in Decerf (2015b) page
104.

25 A Pigou-Dalton transfer is a progressive balanced transfer preserving the relative ranks of the two individuals involved
in the transfer.

26 If function d≽ is not differentiable at (a, y) or at (b, y), then I define these as

∂1d
≽(a, y) := lim

x→a+
∂1d

≽(x, y) and ∂1d
≽(b, y) := lim

x→b−
∂1d

≽(x, y).
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5 Characterization of a particular index

Decerf (2015a) proposes an additive index satisfying Monotonicity in Income and Transfer and whose
underlying EO satisfies all restrictions presented. The remainder of this paper proposes a full character-
ization of that index. The novelty of this characterization is that the properties defining the index are
automatically inherited by any relativist measure based on this index.

The additional properties necessary for its characterization are four robustness properties. Robustness
properties require that the judgments made by the poverty index stay consistent when the EO undergoes
specific modifications. For some of these robustness properties, these modifications are also applied to
the distributions considered. Two properties are specific to the extended model whereas the other two
are adaptations of robustness properties studied in Sen’s model.

5.1 Specific Properties

The first two robustness properties are new and specific to this extended model. Each investigates how
the comparison of two distributions evolves when the EO is altered in a particular way.

Line relativism independence in poor societies is restricted to the comparison of two distributions
sharing the same “low” value of income standard. Mean income is considered as “low” when smaller than
ym, the smallest value of mean income at which the poverty line is non-flat. Line relativism independence
in poor societies requires that if two EOs share the same absolute threshold and their poverty thresholds
are equal for low values of mean income, then their ranking of two low-income distributions is the same.
In other words, how relative the line is defined for high-income distributions is irrelevant to poverty
comparisons of low-income distributions, for which the line is flat.

Poverty axiom 8 (Line relativism independence in poor societies).
For all ≽,≽′∈ R with

zm = zm
′

where z = Z(≽) and z′ = Z(≽′), and

Za(≽) = Za(≽′),

and all y, y′ ∈ Y (≽) ∩ Y (≽′) with y = y′ ≤ min{ym(≽), ym(≽′)} and n(y) = n(y′) we have

P (y,≽) ≥ P (y′,≽) ⇔ P (y,≽′) ≥ P (y′,≽′)

Weak monotonicity in absolute threshold links the judgments of EOs that share the same poverty line.
It requires that the poverty attributed to a given distribution cannot decrease when the absolute threshold
is increased. A larger absolute threshold implies that absolutely poor individuals are further away from
the absolute threshold and relatively poor individuals are closer to the absolute threshold (more at risk
of becoming absolutely poor). Also, some relatively poor individuals may become absolutely poor. Weak
monotonicity in absolute threshold restricts this requirement to distributions whose mean income is below
a certain value in order to escape the impossibility for additive axioms satisfying Transfer to satisfy the
strong version of this axiom.27

Poverty axiom 9 (Weak monotonicity in absolute threshold).
For all ≽,≽′∈ R with

Z(≽) = Z(≽′) and

Za(≽) < Za(≽′),

and for all y ∈ Y (≽) ∩ Y (≽′) with y ≤ ym(≽) = ym(≽′) we have

P (y,≽) ≤ P (y,≽′).

Theorem 4 exposes the joint implications of these two axioms. Its presentation requires the introduc-
tion of the concept of equivalent income function. The definition of this function is built on the poverty
line and the absolute threshold of the EO considered. For a poor individual, the equivalent income at
mean income yr is the level of income yielding – when mean income is yr – the same well-being as

27 See appendix 7.5 for a proof of this impossibility.
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her current bundle. Formally, for a given EO, a given value of mean income yr and a given bundle for
individual i, this means

(yi, y) ∼
(

er≽(yi, y), y
r
)

.

The definition of the equivalent income function is given in equation (9). This definition is in three parts.
These parts specify the equivalent income for absolutely, relatively and non-poor individuals respectively.

Definition 5 (Equivalent income function at yr).
Take any ≽∈ R and any yr > 0. For all y ∈ Y (≽) and any individual i ≤ n(y), the equivalent income
function at yr is er≽ : X → [0, z(yr)] defined by

er≽(yi, y) :=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

yi if yi < za,

za + (yi − za) z(y
r)−za

z(y)−za if yi ∈ [za, z(y)),

z(yr) if yi ≥ z(y).

(9)

The first two robustness properties force the numerical representation of the EO to depend only on
two parameters: the line’s intercept and the absolute threshold. Remember that the intercept of the
poverty line z = Z(≽) is denoted by zm = z(ym).

Theorem 4 (Numerical representation based on two parameters).
The following two statements are equivalent.

1. P is an additive index that satisfies Line relativism independence in poor societies and Weak mono-
tonicity in absolute threshold.

2. P is ordinally equivalent to an index P̂ : P → [0, 1] defined by

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

f
(

em≽ (yi, y), z
m, za

)

, (10)

where

• za = Za(≽) and z = Z(≽),

• f is continuous in its first argument, non-decreasing in its third argument, strictly decreasing
in its first argument on [0, zm)] and f(0, zm, za) = 1 and f(b, zm, za) = 0 for all b ≥ zm.

Proof. Here is the intuition why statement 1 implies statement 2. Take any numerical representation of
any EO. Its mathematical expression depends on the value of mean income at which it is expressed. Select
(arbitrarily) the low value ym, as the value of mean income at which it is expressed. The preconditions
of property Line relativism independence in poor societies forces any two EOs featuring the same za and
zm to perform the same poverty comparisons among distributions with low-income. Their associated
indices are therefore based on the same function f . Function f completely defines a unique numerical
representation. The evaluation of distributions whose mean income is different from ym is done by
evaluating “equivalent” distributions. For any distribution y, an equivalent distribution with mean income
equal to ym is obtained by considering for each individual the equivalent income at ym, which is returned
by function em≽ . See Appendix 7.6 for the detailed proof. !

Theorem 4 relates the numerical representation of EOs sharing the same values for the two parameters.
These numerical representations have the same mathematical expression at mean income equal to ym.
When the two parameters are equal, the contribution attributed to a given bundle depends on the EO
considered only to the extent that it changes the equivalent income at ym. These implications are
directly derived from Line relativism independence in poor societies . In turn, Weak monotonicity in
absolute threshold implies that the contribution weakly increases with the absolute threshold.28

28 The contribution must weakly increase with the intercept as well if one imposes Monotonicity in line, an additional
property presented in Appendix 7.1.2.
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5.2 Adapted Properties

The last two properties are Scale consistency and Translation consistency. These properties constrain
the poverty judgments when the incomes of the poor individuals and the EO are submitted to the same
translation or when they are scaled using the same factor. These properties are adaptations for the
extended model of the homonymous properties studied in Sen’s model. There is a key difference between
the implications of the original properties in Sen’s model and the implications of their adapted versions
in the extended model: the adapted versions do not constrain the comparisons of individual well-being
across distributions with different income standard. Such contraints are unavoidable in Sen’s model, as
shown by Zheng (2007). In other words, the original versions constrain the comparison of individual
bundles, i.e. constrain the EO.

In Sen’s model, a bundle’s contribution to poverty may only depend on its absolute distance to
the poverty threshold (Translation consistency) or on its normalized distance to the poverty threshold
(Scale consistency). In the extended model, Theorem 5 shows that the adapted versions imply an FGT
expression for function f in the particular cases for which the absolute threshold is zero or equal to the
intercept. This result is weaker than a similar result derived in Sen’s model (Ebert and Moyes, 2002).
Since function f is non-decreasing in the absolute threshold, Theorem 5 provides for function f an upper
and a lower-bound with exponential expression.

The adaptation of these two properties to the extended framework requires to introduce specific trans-
formations of income distributions and EOs. The definition of these transformations is a bit technical.

Scale consistency is a robustness axiom requiring that if the poverty threshold and the income level
of poor individuals are multiplied by the same amount and the EO is transformed accordingly, then the
judgments are consistent. In other words, the contributions to poverty depend only on the normalized
distance to the poverty threshold.

I define a transformation of any distribution y denoted by y×λ. The incomes of all poor individuals
in y×λ are equal to λ times the income of their counterpart in y and the incomes of non-poor individuals
in y×λ are adapted in order to preserve mean income. For all y ∈ Y and all λ > 0 we have

y×λ :=

(

λy1, . . . ,λyq,
ny −

∑q
j=1 λyj

n− q
, . . . ,

ny −
∑q

j=1 λyj

n− q

)

.

For all λ > 0 and all ≽∈ R, I define the transformation ≽×λ by:

(yi, y) ≽ (y′i, y
′) ⇔ (λyi, y) ≽

×λ (λy′i, y
′) for all (yi, y), (y

′
i, y

′) ∈ X.

The definition of ≽×λ implies that for all (yi, y) ∈ X and all yr > 0 we have

er≽×λ(λyi, y) = λer≽(yi, y).

Observe that there is no guarantee that y×λ belongs to Y (≽×λ) when y belongs to Y (≽), although
λ ≤ 1 is a sufficient condition for this implication.

Consider the following important technical remark. If Z(≽) is flat, then Za(≽×λ) is not well-defined,
given that any za ∈ [0, zm(≽×λ)] is such that ≽×λ meets Priority to Income below za when we have
Za(≽×λ) = za. I relate the definition of Za(≽×λ) to the definition of Za(≽). This definition requires
that an individual that is relatively poor in y has its counterpart relatively poor in y×λ. The same holds
true for absolutely poor individuals. Hence, Za(≽×λ) is the unique value in [0, zm(≽×λ)] such that for
all y ∈ Y (≽) and y×λ ∈ Y (≽×λ) we have that qa(y) = qa(y×λ) given ≽ and ≽×λ respectively.

Poverty axiom 10 (Scale consistency).
For all ≽∈ R, all λ > 0 and all x, y ∈ Y (≽) with x = y, if

≽×λ∈ R and

x×λ, y×λ ∈ Y (≽×λ),

then we have that

P (x,≽) ≥ P (y,≽) ⇔ P (x×λ,≽×λ) ≥ P (y×λ,≽×λ).

Analogously, Translation consistency is a robustness axiom requiring that if the poverty threshold
and the income level of poor individuals are translated by the same amount and the EO is transformed
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accordingly, then the judgments are consistent. In other words, the contributions to poverty depend only
on the absolute distance to the poverty threshold.

I define a transformation of any distribution y denoted by y+δ. The income of all poor individuals
in y+δ are equal to δ plus the income of their counterpart in y and the incomes of non-poor individuals
in y+δ are adapted in order to preserve mean income. For all y ∈ Y and all δ ∈ R we have

y+δ :=

(

y1 + δ, . . . , yq + δ,
ny −

∑q
j=1(yj + δ)

n− q
, . . . ,

ny −
∑q

j=1(yj + δ)

n− q

)

.

For all δ ∈ R and all ≽∈ R, I define the transformation ≽+δ by:

(yi, y) ≽ (y′i, y
′) ⇔ (yi + δ, y) ≽+δ (y′i + δ, y′) for all (yi, y), (yi + δ, y), (y′i, y

′) and (y′i + δ, y′) ∈ X.

The definition of ≽+δ implies that for all (yi, y) ∈ X and all yr > 0 we have

er≽+δ(yi + δ, y) = er≽(yi, y) + δ.

Observe that ≽+δ∈ R for all δ > −Za(≽). If the line of ≽ is non-flat, then ≽+δ /∈ R for all values
δ ∈ (−zm(≽),−Za(≽)), because its iso-poverty curves violate Homotheticity above za.29 The same
technical remark about the definition of Za(≽+δ) as the one made above about Za(≽×λ) holds for EOs
having flat lines.

Observe that there is no guarantee that y+δ belongs to Y (≽+δ) when y belongs to Y (≽), although
δ ∈ [−min{y1, Za(≽)}, 0] is a sufficient condition for this implication.

Poverty axiom 11 (Translation consistency).
For all ≽∈ R, all δ ∈ R and all x, y ∈ Y (≽) with x = y, if

≽+δ∈ R and

x+δ, y+δ ∈ Y (≽+δ),

then we have that

P (x,≽) ≥ P (y,≽) ⇔ P (x+δ,≽+δ) ≥ P (y+δ,≽+δ).

Theorem 5 shows that Scale consistency and Translation consistency imply exponential bounds for
the function f defining the individual contributions to poverty.

Theorem 5 (FGT bounds on poverty indices).
Any index P that is ordinally equivalent to (10) satisfies Scale consistency and Translation consistency
only if for all ≽∈ R with Za(≽) = 0 and all (yi, y) ∈ Xp we have

f
(

em≽ (yi, y), z
m, 0

)

=

(

1−
em≽ (yi, y)

zm

)α0

, (11)

and if for all ≽∈ R with Za(≽) = zm and all (yi, y) ∈ Xp we have

f
(

em≽ (yi, y), z
m, zm

)

=

(

1−
em≽ (yi, y)

zm

)α1

, (12)

where α0 ≥ α1 > 0.

Proof. The proof is based on the subset of EOs whose poverty line is flat. On this subset, the extended
model is equivalent to the framework studied by Ebert and Moyes (2002). These authors show in the
model of Sen that these two properties lead to poverty orderings representable by FGT indices. The
relative size of α0 and α1 follows from the fact that function f is non-decreasing in its third argument.
The detailed proof is in Appendix 7.7. !

29 More fundamentally, ≽+δ /∈ R for all δ ∈ (−zm(≽),−Za(≽)) because its iso-poverty curves violate Minimal Absolute
Concern.
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Theorem 5 proposes two necessary conditions for Scale consistency and Translation consistency.
These conditions respectively specify, up to a parameter α, the numerical representation for EOs whose
absolute threshold is equal to zero and for EO’s whose absolute threshold is equal to the intercept of
their poverty line. What is more, the relative size of parameters α0 and α1 is constrained. Given that
function f is non-decreasing in its third argument, these conditions provide an upper- and a lower-bound
for the numerical representation of EOs whose absolute threshold has intermediary value.

The conditions in Theorem 5 are necessary but not sufficient for these two properties. One may wonder
whether there exists an index ordinally equivalent to (10) satisfying Scale consistency and Translation
consistency. In Appendix 8, I show that any index that has the FGT form with exponent α0 = α1 =
α > 0 is an example of such index.

5.3 Characterization

The robustness properties imply that the individual contribution to poverty is given by a unique function
f that depends on two parameters. Moreover, function f has exponential form for the two extreme
values of the absolute threshold parameter. Theorem 6 shows that there is a unique index meeting these
exponential bounds that satisfies Monotonicity in Income and Transfer .30 In other words, Theorem 6
shows that all the properties jointly characterize a unique index. This index corresponds to the index
proposed in Decerf (2015a). This result is the first characterization of an index designed for non-absolute
poverty lines. The index is a version of the Poverty Gap Ratio that compares individual well-beings
according to the EO considered.

Theorem 6 (Characterization of an index).
The following two statements are equivalent.

1. Index P is ordinally equivalent to (10) and satisfies Scale consistency, Translation consistency,
Monotonicity in Income and Transfer.

2. P is ordinally equivalent to index P̂ : P→[0, 1] defined by

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

(

1−
em≽ (yi, y)

zm

)

,

where

em≽ (yi, y) :=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

yi if yi < za,

za + (yi − za) zm−za

z(y)−za if yi ∈ [za, z(y)),

zm if yi ≥ z(y).

Proof. The proof is in three steps, whose respective proofs are inspired from the proof of Theorem 1 in
Decerf (2015a). First, I show that the index satisfies Monotonicity in Income only if the lower-bound
on f given by (11) is such that α0 = 1. That is, function f is linear in its first argument when za = 0.
Second I show that, when the lower-bound on f is given by (11) with α0 = 1, the index satisfies Transfer
only if

f
(

em≽ (yi, y), z(y
m), za

)

= f
(

em≽ (yi, y), z(y
m), 0

)

for all za ∈ [0, zm],

i. e. function f takes the expression of its lower-bound for all values of the absolute threshold. Here
is the intuition for this result. By Theorem 4, we have f(0, zm, za) = 1 and f(zm, zm, za) = 0 for all
za ∈ [0, zm]. Transfer forces f to be convex in its first argument. If function f has a linear expression
when za = 0 and function f is increasing in its parameter za, the only way for f to stay convex in its first
argument when za increases is to maintain its linear expression. Therefore, function f is independent
on the absolute threshold. Third, I show that this index satisfies both Monotonicity in Income and
Transfer . The detailed proof is in Appendix 9. !

30 As shown in Appendix 8, the index characterized satisfies Scale consistency and Translation consistency .
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Theorem 6 illustrates the strong discriminative power of Monotonicity in Income and Transfer . In
order to get a sense of their combined power, remember that Theorem 5 only requires function f to
evolve between two very wide bounds defined by (11) and (12). A detailed intuition for their combined
power is provided elsewhere (Decerf, 2015a).

To some extent, the characterization also holds even if the index is used in combination with a flat
line. The reason is that the ranking of distributions must be independent on how the line behaves beyond
ym. However, this characterization does not hold if the set of poverty lines Z is restricted to only include
flat poverty lines.

One could argue that the characterization is not complete in the sense that there remains one pa-
rameter: the absolute threshold. That is true. However, another perspective is to consider that any
relativist measure based on this index needs two poverty lines: one hybrid line and one absolute line
whose threshold is everywhere below the hybrid line.

6 Concluding remarks

Income inequalities have recently attracted more attention. Abstracting from the impacts that inequali-
ties may have on behavior, there exists two main normative reasons why one may care about inequalities.
The first is fairness. An external observer may prefer more equal distributions of resources. The sec-
ond is that inequalities may have intrinsic value for the concerned individual. For instance, people’s
preferences may depend on both their absolute income and their relative income. Alternatively, the
social functionings provided by a given amount of resources may depend on the society’s standards of
living. The second reason is the mainstream foundation used to defend relativist poverty measures. Any
poverty measure endorsing such foundation must first aggregate the absolute and relative aspects of
income at the individual level and second aggregate individual contributions over the whole population,
as proposed by Atkinson and Bourguignon (2001). As these authors suggest, taking onboard the relative
aspect of poverty is not only a matter of picking the right poverty line(s) but also a matter of selecting an
appropriate index. Following their approach, Decerf (2015a) stresses the importance of the iso-poverty
maps associated to relativist poverty measures. This paper integrates iso-poverty maps, formalized by
the concept of ethical ordering, in the model used to study the properties of poverty measures.

More generally, this research participates to recent attempts at introducing relative aspects in nor-
mative judgments (Decerf and Van der Linden, 2014; Treibich, 2014). There are many potential issues
linked to the such attempts. I mention two of them. First, normative judgments should not give excessive
importance to the relative over the absolute aspect of one’s situation. The imposition of appropriate
restrictions to the relevant EO constitutes an obvious solution for relativist poverty measures. Second,
one should not give more priority to jealous individuals than to self-centered or altruistic individuals.
The introduction of an ethical ordering, which makes the same trade-offs for all individuals, is one way
out of this second issue.

7 Appendix

7.1 Additional Axioms

7.1.1 Sen’s model Axioms

Classical poverty axiom 1 (Scale Invariance).
For all y ∈ Y , z∗ ∈ R++ and λ > 0, P (y, z∗) = P (λy,λz∗).

Focus requires that the index is not sensitive to the income level of non-poor individuals.

Classical poverty axiom 2 (Focus).
For all y, y′ ∈ Y and z∗ ∈ R++, if n(y) = n(y′), q(y) = q(y′) and yi = y′i for all i ≤ q(y), then
P (y, z∗) = P (y′, z∗).

Classical poverty axiom 3 (Subgroup Consistency).
For all z∗ ∈ R++ and all y1, y2, y3, y4 ∈ Y with n(y1) = n(y3) and n(y2) = n(y4), if P (y1, z∗) > P (y3, z∗)
and P (y2, z∗) = P (y4, z∗), then P ((y1, y2), z∗) > P ((y3, y4), z∗).

Monotonicity in Income requires that decreasing the income of some poor individual never leads to
an unambiguous poverty reduction.
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Classical poverty axiom 4 (Monotonicity in Income).
For all y, y′ ∈ Y and z∗ ∈ R++, if n(y) = n(y′), yi < y′i < z(y′) and y′j = yj for all j ̸= i, then
P (y, z∗) ≥ P (y′, z∗).

7.1.2 New model Axioms & Restrictions

Translation Monotonicity requires that any poor individual is considered weakly better-off after the equal
distribution of an extra amount of income. Intuitively, an equal distribution of income cannot deteriorate
the relative situation of a poor individual. The corollary of Translation Monotonicity is that the slope
of the EO’s iso-poverty curves is nowhere larger than one.

EO restriction 4 (Translation Monotonicity).
For all (yi, y) ∈ Xp(≽) and a > 0, we have (yi + a, y + a) ≽ (yi, y).

Minimal Absolute Concern requires that an individual with zero income is considered strictly worse-
off than another individual with non-zero income, regardless of the mean incomes in their respective
societies.

EO restriction 5 (Minimal Absolute Concern).
For all (yi, y), (0, y′) ∈ Xp(≽) with yi > 0, we have (yi, y) ≻ (0, y′).

Weak Focus requires that the incomes of non-poor individuals is irrelevant to poverty, only as long
as the income standard is unchanged.

Poverty axiom 12 (Weak Focus).
For all ≽∈ R and all y, y′ ∈ Y (≽), if n(y) = n(y′), q(y) = q(y′), y = y′ and yi = y′i for all i ≤ q(y),
then P (y,≽) = P (y′,≽).

Monotonicity in line links the judgments of EOs that share the same iso-poverty curves, but not
necessarly the same line. It requires that an increase in the line that does not affect the individual
comparisons below the old line cannot decrease poverty.

Poverty axiom 13 (Monotonicity in line).
For all ≽∈ R, and all λ > 1, if ≽′∈ R is such that

Za(≽′) = Za(≽)

z′(y) = λ(z(y)− za) + za for all y ≥ 0,

where z = Z(≽), z′ = Z(≽′) and za = Za(≽), then for all y ∈ Y (≽) we have

P (y,≽) ≤ P (y,≽′).

7.2 Proof of Theorem 1

I only show that statement 2 implies statement 1 as the reverse implication is easily verified. Consider
any poverty index P satisfying the axioms listed in statement 2. Take any EO ≽∈ R.

STEP 1: Definition of a poverty ordering on a product space that is equivalent to the poverty or-
dering on Y (≽).

In step 1, I show that the continous and complete ordering on Y (≽) represented by P is equivalent
to a continuous and complete poverty ordering on a product space

Vd := ∪n∈N ′ [0, 1]n,

where N ′ := {n ∈ N|n ≥ 2}, represented by PV .
To do so, I construct a continuous mapping m : Y (≽) → Vd such that for any two ν, ν′ ∈ Vd and

y, y′ ∈ Y (≽) with m(y) = ν and m(y′) = ν′ we have that

PV (ν) ≥ PV (ν′) ⇔ P (y,≽) ≥ P (y′,≽). (13)
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Definition of the mapping

Consider any numerical representation d≽1 of ≽. I define a continuous mapping m : Y (≽) → Vd. For all
y ∈ Y (≽), mapping m is defined by

m(y) = (d≽1 (y1, y), . . . , d
≽
1 (yn−1, y)) := (ν1, . . . , νn−1) = ν.

I emphasize two particularities of mapping m. First, the size of distribution y is n(y), whereas the
size of its image ν = m(y) is n(y) − 1. Second, the mapping m is not a one-to-one mapping as several
income distributions may be mapped to the same image in Vd.31 As I show below, these particularities
do not prevent the ordering on Vd to have the desired properties.

Mapping m is continuous as d≽1 is continuous in both its arguments and the mean is a continuous
function of its arguments.

I show that the mapping defined is such that

m(Y (≽)) = Vd.

That is, the domain of images of Y (≽) through mapping m is the product space Vd. This means that
(i) m(Y (≽)) ⊆ Vd and (ii) Vd ⊆ m(Y (≽)). If (i) follows directly from the definition of mapping m, (ii)
remains to be proven. Proving (ii) amounts to prove Lemma 1.

Lemma 1. For all ν ∈ Vd, there exists y ∈ Y (≽) such that ν = m(y).

Proof. Take any ν ∈ Vd, sorted in non-increasing order ν1 ≥ · · · ≥ νi ≥ · · · ≥ νn−1, where n − 1 ∈ N ′

denote the size of ν. Let q ≤ n− 1 denote the largest integer for which νq > 0. I construct a distribution
y such that n(y) = n, q(y) = q, m(y) = ν and show that y ∈ Y (≽). The poverty line z = Z(≽) belongs
to Z by assumption as ≽∈ R. Therefore, z meets Flat Line in Poor Societies and, hence, there exists
y′ > 0 such that y′ ≥ z(y′). I construct distribution y such that y = y′:

• yi := ai defined implicitly by νi = d≽1 (ai, y
′) for all i ≤ q,

• yj :=
ny′−

∑q
k=1 yk

n−q
for all j with q + 1 ≤ j ≤ n.

By construction, we have that n(y) = n, q(y) ≥ q and y = y′. I show that yj ≥ z(y′), which implies that
q(y) = q < n(y) and, hence, y ∈ Y (≽). By restrictions Priority to Income below za and Homotheticity
above za and the continuity of d≽1 , we have that ai ∈ [0, z(y′)) for all i ≤ q. Therefore, we have that

q
∑

k=1

yk ≤ qy′.

This inequality implies that yj ≥ z(y′) since we have y′ ≥ z(y′). In words, all individuals j with
q+1 ≤ j ≤ n are non-poor and are such that m(yj) = 0 by constuction of the mapping. By construction
of y, we have that m(y) = ν. !

The equivalent ordering on Vd

I define an ordering on Vd from the ordering on Y (≽) represented by P . Let this ordering on Vd be
represented by PV : Vd → [0, 1] defined by

PV (ν) = PV
(

m(y)
)

= P (y,≽) for all ν ∈ Vd,

where y ∈ Y (≽) is such that ν = m(y). If such distribution y exists and is unique, then the ordering
represented by PV satisfies (13) by construction.

By Lemma 1, such y ∈ Y (≽) exists, but this distribution needs not be unique as m is not a one-to-one
mapping. Nevertheless, for all y, y′ ∈ Y (≽) with ν = m(y) = m(y′), we have P (y,≽) = P (y′,≽) by
Domination.

Therefore, this ordering on Vd is equivalent to the ordering on Y (≽) represented by P (y,≽). Taking
the size of ν to be n(y)− 1 instead of n(y) is without loss of generality as for all y ∈ Y (≽) we have by

31 This is for example the case when two distributions of the same size have the same mean, the same number of poor
individuals who have the same income as their counterparts, but non-poor individuals have different incomes than their
counterparts.
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assumption that individual n(y) is non-poor.32 By Domination, the fate of individual n(y) is irrelevant
to the ordering on Y (≽).

This ordering on Vd is well-defined and complete, as P represents a complete ordering on Y (≽). Func-
tion PV is continuous since the ordering on Vd is continuous because the ordering on Y (≽) is continuous
by Continuity and mapping m is continuous.

STEP 2: Index PV representing the equivalent ordering on the product space is additively separa-
ble.

If the assumptions of Theorem 1 in Gorman (1968) are all met, then for any n ∈ N and any ν ∈ Vd that
has size n− 1, index PV has the following functional form:

PV (ν) = F̃

(
n−1
∑

i=1

φ̃(νi)

)

(14)

where F̃ and φ̃ are strictly increasing functions.
Take any n ∈ N . For the remaining part of Step 2, I abuse slightly notation by denoting [0, 1]n−1 ⊂ Vd

directly by Vd. The three assumptions required for this theorem are the following:

Assumption 1: The index PV represents a complete and continuous ordering on a product space
Vd.

Vd is a product space since Vd = ×n−1
i=1 [0, 1]i. I proved in Step 1 that the ordering on Vd is complete

and continuous.

Assumption 2: Each sector [0, 1]i of Vd has a countably dense subset, is arc-connected and is strictly es-
sential. Strict essentiality means that given any subdistribution (ν1, . . . , νi−1, νi+1, . . . , νn−1) ∈ ×n−2

j=1 [0, 1]j,
not all elements of [0, 1]i are indifferent for the ordering on Vd.

As all sectors are real intervals, any sector has a countably dense subset and is arc-connected. Strict
essentiality follows directly from Domination and Lemma 1, which implies that for any subdistribution

(ν1, . . . , νi−1, νi+1, . . . , νn−1) ∈ [0, 1]n−2,

the value of νi ∈ [0, 1] is not constrained by the subdistribution.33

Assumption 3: Let S := {[0, 1]1, . . . , [0, 1]n−1} be the set of sectors in Vd. Any subset of sectors
A ⊆ S is separable. Separability means that for all (u,w), (v, w), (u, t), (v, t) ∈ Vd, we have

PV (u,w) ≥ PV (v, w) ⇔ PV (u, t) ≥ PV (v, t).

Separability is proven in two substeps.

Substep 1:
Construct for each of these four elements of Vd a particular income distribution in Y (≽) that has the
same poverty and whose subgroups have the same value of mean income.

Construct y1, y2, y3, y4 ∈ Y (≽) such that m(y1) = (u,w), m(y2) = (v, w), m(y3) = (u, t), m(y4) =
(v, t) and y1 = y2 = y3 = y4 = y′ with y′ ≥ z(y′). Such distributions exist and are constructed with the
procedure given in Lemma 1.

The next operations aim at constructing from y1 another income distribution y1∗ whose poverty is
the same as y1 but meeting the restrictions necessary to apply Weak Subgroup Consistency.

Decompose y1 in subgroups y1 = (y1A, y
1
B, y

1
n), such that subdistributions y1A and y1B are associated

– via the numerical representation d≽1 – to the subdistributions u and w respectively. That is, for each
element ui ∈ u there exists y1i ∈ y1A such that ui = d≽1 (y

1
i , y

1). The same holds for w and y1B. Typically,
y1A ̸= y1B ̸= y′ but the next operations aims at obtaining such equality.

Triplicate y1 and re-organize the subgroups to obtain at least one non-poor individual per subgroup.
Let y1

′

denote the distribution obtained from this triplication

y1
′

:= (y1, y1, y1) = (y1A, y
1
A, y

1
A, y

1
B, y

1
B, y

1
B, y

1
n, y

1
n, y

1
n)

32 As individual n(y) is non-poor we have by definition that d≽1 (yn, y) = 0.
33 In the definition and the proof of strict essentiality, the indices are not sorted by income level but refer to the identities.
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This triplication does not affect the mean: y1
′

= y1. Reorganize subgroups: y1
′

= (y1A′ , y1B′ , y1n) with
y1A′ := (y1A, y

1
A, y

1
A, y

1
n) and y1B′ := (y1B, y

1
B, y

1
B, y

1
n). Letting u′ := (u, u, u) and w′ := (w,w,w), we have

that

m(y1
′

) = (u, u, u, 0, w, w,w, 0) = (u′, 0, w′, 0),

as d≽1 (yi, y
′) = 0 for any yi ≥ z(y′).

Construct y1∗A′ such that m(y1∗A′) = u′ with y1∗A′ = y′ and y1∗B′ such that m(y1∗B′) = w′ with y1∗B′ = y′.
Those income distributions exist as proven in Lemma 1, as each subgroup A′ and B′ contains at least
one non-poor individual. The income distribution y1∗ := (y1∗A′ , y1∗B′ , y′) is such that m(y1∗) = (u′, 0, w′, 0).
This distribution belongs to Y (≽) given that y′ ≥ z(y′). This distribution is also such that y1∗ = y′ as
its three subgroups have mean y′.

Using the same procedure (decomposition, triplication, reorganization), construct successively y2
′

, y3
′

, y4
′

and y2∗, y3∗, y4∗ such that:

y1∗ = (y1∗A′ , y1∗B′ , y′) with m(y1∗) = (u′, 0, w′, 0) = (u, u, u, 0, w, w,w, 0),

y2∗ = (y2∗A′ , y2∗B′ , y′) with m(y2∗) = (v′, 0, w′, 0) = (v, v, v, 0, w, w,w, 0),

y3∗ = (y3∗A′ , y3∗B′ , y′) with m(y3∗) = (u′, 0, t′, 0) = (u, u, u, 0, t, t, t, 0),

y4∗ = (y4∗A′ , y4∗B′ , y′) with m(y4∗) = (v′, 0, t′, 0) = (v, v, v, 0, t, t, t, 0).

For all m ∈ {1, 2, 3, 4}, we have P (ym
′

,≽) = P (ym,≽) by Replication Invariance. As (ym
′

i , y′) ∼ (ym∗
i , y′)

for all i ≤ q(ym∗), we have P (ym∗,≽) = P (ym
′

,≽) by Domination. By Step 1, proving

P (y1∗,≽) ≥ P (y2∗,≽) ⇔ P (y3∗,≽) ≥ P (y4∗,≽)

is equivalent to proving

PV (u,w) ≥ PV (v, w) ⇔ PV (u, t) ≥ PV (v, t).

Importantly, the subgroups A’ and B’ in the distribution ym∗ have their mean income equal to y′ by
construction. For notational simplicity, drop the symbols ∗ and ′ to name the new distributions and
subgroups as the old ones.

Substep 2:
Prove separability from judgments on the associated income distributions:

P
(

(y1A, y
1
B, y

′),≽
)

≥ P
(

(y2A, y
2
B, y

′),≽
)

⇔ P
(

(y3A, y
3
B, y

′),≽
)

≥ P
(

(y4A, y
4
B, y

′),≽
)

.

By construction, these income distributions are such that

• P (y1A,≽) = P (y3A,≽),

• P (y2A,≽) = P (y4A,≽),

• P (y1B,≽) = P (y2B,≽) and

• P (y3B,≽) = P (y4B,≽),

by Domination. By assumption, we have P (y1,≽) ≥ P (y2,≽). As P (y1B,≽) = P (y2B,≽), we have that
P ((y1A, y

′),≽) ≥ P ((y2A, y
′),≽) by Weak Subgroup Consistency (remember all our subgroups have their

mean equal to y′). By Weak Subgroup Consistency again, this implies P (y1A,≽) ≥ P (y2A,≽).34

Then, combining P (y1A,≽) ≥ P (y2A,≽) together with P (y1A,≽) = P (y3A,≽) and P (y2A,≽) = P (y4A,≽)
imply P (y3A,≽) ≥ P (y4A,≽). Two cases can arise.

• Case 1: P (y3A,≽) > P (y4A,≽).
Since P (y3B,≽) = P (y4B,≽) by Domination, we have that P ((y3B, y

′),≽) = P ((y4B, y
′),≽) by Dom-

ination. Together we obtain

P ((y3A, y
3
B, y

′),≽) > P ((y4A, y
4
B, y

′),≽)

by Weak Subgroup Consistency. This case is hence such that P (y3,≽) ≥ P (y4,≽), as desired.

34Strictly speaking Weak Subgroup Consistency cannot be applied again as subgroup y′ contains a unique individual and
hence does not belong to Y (≽). Nevertheless, further replications of the income distributions solve the issue.
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• Case 2: P (y3A,≽) = P (y4A,≽).
I show by contradiction that this case is such that P (y3,≽) ≥ P (y4,≽). Assume to the contrary
that we have

P ((y3A, y
3
B, y

′),≽) < P ((y4A, y
4
B, y

′),≽).

As P (y3A,≽) = P (y4A,≽), Weak Subgroup Consistency implies that

P ((y3A, y
3
B, y

4
A, y

′),≽) < P ((y4A, y
4
B, y

3
A, y

′),≽).

Again, as P (y3B,≽) = P (y4B,≽), we obtain

P ((y3A, y
3
B, y

4
A, y

4
B, y

′),≽) < P ((y4A, y
4
B, y

3
A, y

3
B, y

′),≽).

This is a contradiction as the two distributions have equal poverty by Symmetry.

The two cases lead to P (y3,≽) ≥ P (y4,≽), which proves separability.

As all three assumptions hold, we can use Theorem 1 in Gorman (1968) and obtain:

PV (ν) = F̃
′

(
n−1
∑

i=1

φ̃i(νi)

)

for all ν ∈ Vd,

where F̃ ′ and φ̃i are strictly increasing functions. Functions φ̃i might still depend on the rank i of the
considered individual. Nevertheless, since the ordering on Vd is separable, we must have φ̃i = φ̃ + f(i).
Defining F̃ (x) := F̃

′

(x+
∑

f(i)), a translation of F̃
′

, we obtain (14) with function φ̃ independent of rank i.

STEP 3: Link the functional form of PV for different sizes of ν.

I show that functions F̃ and φ̃ trivially depend on the number n of individuals. Theorem 1 in Gor-
man (1968) is valid for a fixed number n of individuals. Therefore, when n is allowed to vary, equation
(14) must be written:

PV (ν) = F̃n

(
n−1∑

i=1

φ̃n(νi)

)

.

I modify the proof of Foster and Shorrocks (1991) in order to show that function φ̃n is independent of n
and function F̃n is inversely related to n.

Step 3.1: Define transformations of F̃n and φ̃n for normalization purposes.
Let Fn and φn be the following transformations of F̃n and φ̃n:

φn(νi) = n
[

φ̃n(νi)− φ̃n(0)
]

,

Fn(x) = F̃n

[

x+ (n− 1)φ̃n(0)
]

.

These transformations allows rewritting last equation in the following way

PV (ν) = Fn

(

1

n

n−1
∑

i=1

φn(νi)

)

,

where φn(0) = 0.
Since individual n is non-poor by definition, we have d≽1 (yn, y) = 0. Therefore, we obtain – slightly

abusing notation by introducing the zero contribution to poverty of individual n – that for all n ≥ 3:

PV (ν) = Fn

(

1

n

(

φn(0) +
n−1
∑

i=1

φn(νi)

))

= Fn

(

1

n

n
∑

i=1

φn(νi)

)

, (15)

where Fn and φn are continuous, strictly increasing and φn(0) = 0.

Step 3.2: Prove that functions Fn and φn do not depend on n using Replication Invariance.
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From the previous step, we have φn : [0, 1] → [0, bn] with φn(0) = 0 for all n ∈ N . Take any y ∈ Y (≽)
with n(y) = 5 such that a single individual is poor in y, which is q(y) = 1. Let ν := m(y) = (t, 0, 0, 0) be
the image of y through mapping m, where t can be any point in [0, 1]. Consider distribution x := (y, . . . , y)
a k-replication of y. Let ν′ := m(x) = (t, . . . , t, 0, . . . , 0) be the image of x, which contains 4k − 1 zeros
and k t’s. The dimension of ν is r = 4 and the dimension of ν′ is s = 5k − 1. Therefore we have
s = k(r + 1)− 1 = kr + k − 1.

Denoting F := F4 and φ := φ4, the relationship between φ, φs, F and Fs for all t ∈ [0, 1] is computed
using (15) and Replication Invariance:

PV (ν) = F

[
1

5
φ(t)

]

= Fs

[
k

5k
φs(t)

]

= PV (ν′),

φs(t) = 5F−1
s

[

F

(
1

5
φ(t)

)]

. (16)

Replacing φs(t) in (15) by its value obtained in (16), we get:

F−1[PV (ν′)] = F−1

[

Fs

(

1

5k

5k
∑

i=1

5F−1
s

[

F

(
1

5
φ(ν′i)

)]
)]

(17)

= G−1
s

(

1

5k

5k
∑

i=1

5Gs

(
1

5
φ(ν′i)

)
)

, (18)

where Gs(w) := F−1
s (F (w)) and G4(w) = F−1(F (w)) = w.

By Replication Invariance, we have that F−1[PV (ν)] = F−1[PV (ν′)], which by (18) yields:

Gs

(
1

5
φ(t)

)

=

(

1

5k

5k
∑

i=1

5Gs

(
1

5
φ(ν′i)

)
)

=
1

k

5k
∑

i=1

Gs

(
1

5
φ(ν′i)

)

= Gs

(
1

5
φ(t)

)

+ 4Gs(0),

which shows that Gs(0) = 0.
Consider now any y′ ∈ Y (≽) with n(y′) = 5 and such that q(y′) = 2. Let ν := m(y′) = (t, u, 0, 0) be

the image of y′, where t and u can be any points in [0, 1]. Consider x′ := (y′, . . . , y′) a k-replication of y′.
Let ν′ := m(x′) = (t, . . . , t, u, . . . , u, 0, . . . , 0) be the image of x, which contains 3k − 1 zeros, k t’s and k
u’s.

By Replication Invariance, we have that F−1[PV (ν)] = F−1[PV (ν′)], which by (18) yields:

1

5
φ(t) +

1

5
φ(u) = G−1

s

(

Gs

(
1

5
φ(t)

)

+Gs

(
1

5
φ(u)

))

,

which can be rewritten as the Jensen equation

Gs(x+ x′) = Gs(x) +Gs(x
′),

that admits as general solution Gs(x) = asx+ bs. As Gs(0) = 0 we have bs = 0.
Replacing Gs by its expression in (18), we obtain

F−1[PV (ν′)] =
1

5k

5k
∑

i=1

φ(ν′i).

Therefore, for any y ∈ Y (≽) with n(y) = 5k and its image ν = m(y):

PV (ν) = F

(

1

5k

5k
∑

i=1

φ(νi)

)

(19)
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The same expression is valid for all y ∈ Y (≽) with dimension n(y) as the same reasoning can be applied
between n(y) and the least common multiple between n(y) and 5.

Finally, the transformations d′ and G of the functions φ and F respectively guarantee that the do-

main of image of d′ is [0, 1]. Letting d′(yi, y) := φ(d≽
1 (yi,y))
φ(1) and G(x) := F

(

xφ(1)
)

, we have for all

y ∈ Y (≽):

PV (ν) = G

⎛

⎝
1

n(y)

n(y)
∑

i=1

d′(yi, y)

⎞

⎠ = P (y,≽) (20)

where G is a continuous and strictly increasing function and d′ is a numerical representation of ≽, which
needs not be the same as d≽1 . The previous reasoning is valid for any ≽∈ R. As function G is strictly

increasing, P is ordinally equivalent to P ′ : P → [0, 1] with P ′(y,≽) = 1
n(y)

∑n(y)
i=1 d′(yi, y). This proves

that P is an additive poverty index.

7.3 Proof of Theorem 2

Necessity.
Necessity is proven by contradiction. Assume (7) does not hold for some (a1, y1), (b1, y1) ∈ Xp(≽) with
a1 ≤ b1 and za < b1 ≤ z(y1) where y1 is such that y1 ≥ ym. Therefore, at these two bundles, we have
for some l > 0 that L7 = l.

I prove that for all ϵ > 0, there exists a distribution y2 ∈ Y (≽) with y2 = y1 such that

|l − L6(y
2)| < ϵ

and hence, for ϵ < l, distribution y2 is such that L6(y
2) > 0, violating Monotonicity in Income. Construct

y2 such that

• y21 := a1,

• y2k := b1 for all k with 2 ≤ k ≤ n(y2)− 1 and

• y2n := n(y2)y1 −
∑n(y2)−1

h=1 y2h.

First, I show that distribution y2 is well-specified and belongs to Y (≽). As y1 ≥ ym, we have that
z(y1) ≤ y1 by Flat Line in Poor Societies and Positive Slope less than One. Therefore, individual n is
non-poor: y2n ≥ z(y1) since y1 ≥ z(y1).

We have for distribution y2 that:35

l − L6(y
2) = L7 − L6(y

2)

=
2∂2d≽(b1, y1)− ∂2d≽(a1, y1)

n(y2)
.

In order to show that |l − L6(y
2)| < ϵ, two cases must be considered:

• Case 1: ∂2d≽(b1, y1) and ∂2d≽(a1, y1) are finite.
The distance |l−L6(y

2)| can be made arbitrarly small by taking n(y2) sufficiently large, implying
L6(y

2) > 0, which violates (6) and hence Monotonicity in Income.

• Case 2: ∂2d≽(b1, y1) = ∞.
By Priority to Income below za, this case must be such that b1 > za. Take any a ∈ [0, z(y1)) at
which ∂1d≽(a, y1) is finite. Any distribution y3 ∈ Y (≽) with y3 = y1 constructed such that the
poor individual receiving the increment earns a and any other poor individual earns b1 violates
inequality (6) and hence Monotonicity in Income.

• Case 3: ∂2d≽(a1, y1) = ∞.
By Priority to Income below za, this case must be such that a1 > za. A distribution constructed
in the same way as y3 is constructed in case 2 leads to the desired violation.

35 We have ∂2d≽(y2n, y
1) = 0. If ∂2d≽(y2n, y

1) > 0, then Monotonicity in Income is silent because the increment produces
a distribution without any non-poor individual, hence outside Y (≽).
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The case for which the two bundles are such that b1 < a1 < z(y1) leads to the same contradiction.
The only difference lies in the construction of y2: y2n(y2)−1 := a1, y2k := b1 for all k with 1 ≤ k ≤ n(y2)−2.
The condition is therefore necessary.

Sufficiency.
First, I show that Monotonicity in Income is systematically satisfied for all y ∈ Y (≽) with y < ym. By

Flat Line in Poor Societies, the poverty line’s slope ∂z(y)
∂y

= 0 for all y < ym. By Priority to Income below
za and Homotheticity above za, the iso-poverty curves below the line are then all flat for all y < ym,
which implies that

∂2d
≽(yj , y) = 0 for all j ≤ n(y)

and inequality (6) is respected as its first term is strictly negative by Strict Monotonicity up to line.
Consider any y ∈ Y (≽) with y ≥ ym. By Priority to Income below za, the iso-poverty curves below

the absolute threshold za are all flat, which implies again that

∂2d
≽(yj , y) = 0 for all j ≤ q(y) with yj ≤ za

and therefore inequality (4) is systematically respected as its right hand side is strictly positive by Strict
Monotonicity up to line. As a result, if the condition holds, then we have that for all a ∈ [0, z(y)) and
b ∈ [0, z(y)] that (7) holds.

Sufficiency follows from the fact that, if there exists an y ∈ Y (≽) and individual i such that (6) is
violated, then inequality (7) is violated as well when (7) is computed from the income of individual i
and the income of another individual j∗ ≤ n(y). Individual j∗ is defined to be the individual that has
the largest partial derivative of d≽ with respect to y, in the distribution at hand. For all y ∈ Y (≽) there
exists j∗ ≤ n(y) such that

1

n(y)

n(y)
∑

k=1

∂2d
≽(yk, y) ≤ ∂2d

≽(yj∗, y),

which implies that L6(y) ≤ L7 when L7 is computed from the incomes of individuals i and j∗. The key
property for last inequality to hold is that ∂2d≽(yk, y) depends on the income of other individuals only
through the mean income y.

7.4 Proof of Theorem 3

Consider any additive index P and any ≽∈ R. Transfer is silent for all y ∈ Y (≽) with q(y) < 2. Consider
any y ∈ Y (≽) with q(y) ≥ 2, any λ > 0 and y′ ∈ Y (≽) with n(y) = n(y′), yj − λ = y′j > y′k = yk + λ,
z(y) > yj and y′i = yi for all i ̸= j, k. Transfer requires that P (y,≽) ≥ P (y′,≽). By construction we
have that y′ = y, which implies that

d≽(yi, y) = d≽(y′i, y
′) for all i ̸= j, k

since y′i = yi. Therefore, P (y,≽) ≥ P (y′,≽) is equivalent to

d≽(yj , y) + d≽(yk, y) ≥ d≽(y′j , y
′) + d≽(y′k, y

′),

where yk < y′k < y′j < yj . The last inequality rewrites

d≽(y′k, y
′)− d≽(yk, y) ≤ d≽(y′j , y

′)− d≽(yj , y).

Hence, index P satisfies Transfer if and only if for all y > 0 and all a, b ∈ [0, z(y)) with a < b we have:36

∂1d
≽(a, y) ≤ ∂1d

≽(b, y). (21)

I prove that the condition stated in Theorem 3 is necessary and sufficient to meet the condition ex-
pressed in (21). This proof is based on Lemma 2 and 3 that link the partial derivatives of the numerical
representation.

36 The same remark as in footnote 26 applies.
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Necessity.
Necessity directly follows from the condition expressed in (21).

Sufficiency.
I show that if the condition stated in Theorem 3 holds, then the condition expressed in (21), which is
sufficient for Transfer , also holds.

Take any y > 0 and any two a, b ≥ 0 such that a < b < z(y), I show that we have

∂1d(a, y) ≤ ∂1d(b, y), (22)

if the condition stated in Theorem 3 holds.
Consider a′, b′ such that (a′, ym) ∼ (a, y) and (b′, ym) ∼ (b, y). These a′, b′ exist and belong to [0, zm)

by Priority to Income below za and Homotheticity above za. By Lemma 3 we have that

∂1d(a, y)

∂1d(b, y)
=

∂1d(a′, ym)

∂1d(b′, ym)
if b ≤ za or a ≥ za,

which implies (22) as we have ∂1d(a
′,ym)

∂1d(b′,ym) ≥ 1 since condition (8) holds by assumption and ∂1d(., .) < 0
by Domination and Strict Monotonicity up to line. By Lemma 3 again we have that

∂1d(a, y)

∂1d(b, y)
=

(
zm − za

z(y)− za

)−1 ∂1d(a′, ym)

∂1d(b′, ym)
if a < za < b,

which by Positive Slope less than One implies that

∂1d(a, y)

∂1d(b, y)
≥

∂1d(a′, ym)

∂1d(b′, ym)
if a < za < b,

which also implies (22) as we have ∂1d(a
′,ym)

∂1d(b′,ym) ≥ 1 since condition (8) holds by assumption and ∂1d(., .) < 0
by Domination and Strict Monotonicity up to line.

7.4.1 Relation between partial derivatives

I present two lemmas useful for the proof of Theorem 3.
Lemma 2 shows that the partial derivatives of the numerical representation of an EO meeting Priority

to Income below za and Homotheticity above za are connected to one another in a simple way. The
partial derivative to the mean is zero for absolutely poor individuals. For relatively poor individuals, this
derivative is the opposite of the partial derivative to the income multiplied by the slope of the well-being
curve at the point considered.

Lemma 2 (Partial derivatives at (a, y)).
Let d≽ be a numerical representations of ≽∈ R. For all (a, y) ∈ Xp(≽) we have that

∂2d
≽(a, y) = 0 if a ≤ za, (23)

∂2d
≽(a, y) = −

∂z(y)

∂y

a− za

z(y)− za
∂1d

≽(a, y) if a > za and (24)

d≽ is differentiable at (a, y) with a > za.

Proof. From the definition of the equivalent income function at yr we have that

d≽(a, y) = d≽ (er(a, y), yr) .

First, I prove equation (23). By chain derivation, we have that

∂2d
≽(a, y) = ∂1d

≽ (er(a, y), yr) ∂2e
r(a, y). (25)

Equation (23) follows from the fact that ∂2er(a, y) = 0 when a ≤ za.
Second, I prove equation (24). By chain derivation, we have

∂1d
≽(a, y) = ∂1d

≽ (er(a, y), yr) ∂1e
r(a, y). (26)
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From equation (9), we obtain for a > za that

∂1e
r(a, y) =

z(yr)− za

z(y)− za
,

∂2e
r(a, y) = −

∂z(y)

∂y

a− za

z(y)− za
∂1e

r(a, y).

Replacing the last two equations inside (25) and (26), we obtain respectively that

∂2d
≽(a, y) = ∂1d

≽ (er(a, y), yr)

(

−
∂z(y)

∂y

a− za

z(y)− za
z(yr)− za

z(y)− za

)

,

∂1d
≽(a, y) = ∂1d

≽ (er(a, y), yr)

(
z(yr)− za

z(y)− za

)

,

which yields the desired result when the last two equations are equated.
!

Lemma 3 shows that the partial derivatives at two equivalent bundles are also connected. The partial
derivative to own income are equal for absolutely poor individuals. For relatively poor individuals, they
are proportional to each other.

Lemma 3 (Partial derivatives at equivalent bundles).
Let d≽ be a numerical representations of ≽∈ R. For all (a, y) ∈ Xp(≽) at which d≽ is differentiable and
(a′, y′) such that (a, y) ∼ (a′, y′) we have that

∂1d
≽(a, y) = ∂1d

≽(a′, y′) if a < za, (27)

∂1d
≽(a, y) =

z(y′)− za

z(y)− za
∂1d

≽(a′, y′) if a ≥ za. (28)

Proof. Let the equivalent income function at y′ defined in (9) be denoted e′. This definition implies that

d≽(a, y) = d≽ (e′(a, y), y′) .

First, I prove equation (27). By chain derivation we have that

∂1d
≽(a, y) = ∂1d

≽ (e′(a, y), y′) ∂1e
′(a, y), (29)

= ∂1d
≽(a′, y′)∂1e

′(a, y). (30)

Equation (27) follows from the fact that ∂1e′(a, y) = 1 when a < za because e′(a, y) = a.
Second, equation (28) follows from (30) because when za ≤ a we have that

∂1e
′(a, y) =

z(y′)− za

z(y)− za
.

!

7.5 No additive index satisfies Transfer and Strong monotonicity in absolute
threshold

I show that no additive index satisfying Transfer also satisfies Strong monotonicity in absolute threshold .

Poverty axiom 14 (Strong monotonicity in absolute threshold).
For all ≽,≽′∈ R with

Z(≽) = Z(≽′) and Za(≽) < Za(≽′),

and all y ∈ Y (≽) ∩ Y (≽′) we have

P (y,≽) ≤ P (y,≽′).
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The proof is by contradiction. I show that any additive index P that satisfies Transfer and Strong
monotonicity in absolute threshold violates Domination for any ≽∈ R with Za(≽) = 0 and Z(≽) = z,
where z a weakly relative line with s > 0.

Take any ≽∈ R such that Z(≽) = z. Consider the subset Rz ⊂ R of EOs having their associated
poverty line equal to z:

Rz := {≽′∈ R | Z(≽′) = z}.

I denote by ≽za

the EO in Rz whose absolute threshold is equal to za. Furthermore, I denote by
dz

a

the numerical representation attached to index P for the EO ≽za

. In particular, this numerical
representation is denoted by d0 for the EO ≽0 whose za = 0.

I show by contradiction that index P is such that

d0(a, ym) = 0 for all a ∈ (0, zm),

which clearly violates Domination for this EO that satisfies Strict Monotonicity up to line.
Assume to the contrary that d0(a, ym) = l > 0 for some a < zm. First, I show that for any b with

a < b < zm, there exists y > 0 such that

(a, ym) ∼0 (b, y). (31)

By Homotheticity above za, when za = 0, the previous equivalence is obtained when

a

zm
=

b

z(y)
=

b

max{zm, a′ + sy}
.

Given that s > 0 and a > 0, such y necessarly exists.
Consider the income distribution yb = (b, b, 3y− 2b), which belongs to Y (≽) for all ≽∈ Rz . In effect,

we have y ≥ ym and hence y ≥ z(y) by Flat Line in Poor Societies and Positive Slope less than One,
which implies that individual 3 is non-poor. Given that P is an additive index, we have for all ≽∈ Rz

that

P (yb,≽) =
2

3
dz

a

(b, y),

where za = Za(≽).
By Strong monotonicity in absolute threshold , we have that

P (yb,≽0) ≤ P (yb,≽za

),

for all za ∈ [0, zm), which is equivalent to

d0(b, y) ≤ dz
a

(b, y). (32)

Observe that if za = b, then ≽b∈ Rz as b < zm and is such that

(b, ym) ∼b (b, y), (33)

by Homotheticity above za. Using (31) and (33), inequality (32) becomes

d0(a, ym) ≤ db(b, ym). (34)

The previous inequality can be written for all a ∈ (0, zm) and all b ∈ (a, zm).
To complete the proof, consider the following corollary of Theorem 3: for all ≽∈ R and all b′ ∈ [0, zm]

we have

d≽(b′, ym) ≤
zm − b′

zm
,

where zm = z(ym). This corollary is a direct consequence of the necessity for d≽ to be convex at ym.
Given the previous corollary and as I assumed that d0(a, ym) = l > 0, inequality (34) becomes

0 < l ≤ db(b, ym) ≤
zm − b

zm
.

Taking any value of b such that zm(1− l) < b < zm leads to a violation of the previous inequality, which
yields the desired contradiction.
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7.6 Proof of Theorem 4

Statement 1 implies statement 2.

By definition, any additive index P is ordinally equivalent to an index P̂ : P → [0, 1] defined by

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

d≽(yi, y),

where d≽ is a numerical representation of ≽.
For a given line z, let yB be the value of mean income defined by yB := zm. By Non-zero Threshold

and Flat Line in Poor Societies, this value is such that

z(yB) = zm.

Any two ≽,≽′∈ R with Z(≽) = Z(≽′) share the same value of zm and, therefore, the same yB.
For all ≽∈ R, let function eB≽ be the equivalent income at yB. The definition of the equivalent income

function at yB implies that

(yi, y) ∼
(

eB≽(yi, y), y
B
)

for all (yi, y) ∈ X.

Given that d≽ is a numerical representation of ≽, we have that

d≽(yi, y) = d≽
(

eB≽(yi, y), y
B
)

for all (yi, y) ∈ X.

As yB is a constant for a given ≽, I can omit yB in the list of arguments of function d≽. Then, defining
f≽ : [0, zm] → [0, 1] by

f≽
(

eB≽(yi, y)
)

:= d≽
(

eB≽(yi, y), y
B
)

for all (yi, y) ∈ X,

we have

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

f≽
(

eB≽(yi, y)
)

. (35)

Let RI(≽) be the subset of EOs that share the same absolute threshold and intercept as ≽:

RI(≽) := {≽′∈ R|Za(≽′) = Za(≽) and zm
′

= zm}.

The respetive definitions of yB and ym imply that yB ≤ ym by Flat Line in Poor Societies. Therefore,
Line relativism independence in poor societies implies that for all ≽∈ R, ≽′∈ RI(≽) and all y, y′ ∈ Y (≽
) ∩ Y (≽′) with y = y′ = yB = yB

′

we have that37

P̂ (y,≽) ≥ P̂ (y′,≽) ⇔ P̂ (y,≽′) ≥ P̂ (y′,≽′).

Given the additive expression of P̂ shown in (35), the last property holds if and only if f≽′

is an
affine transformation of f≽, which is

f≽′

(u) = a+ bf≽(u) for all u ∈ [0, zm],

where a ∈ R and b > 0. As d≽ is a numerical representation of ≽, we have that d≽
(

0, yB
)

= 1 and

d≽
(

zm, yB
)

= 0. The same holds true for d≽
′

. This implies that a = 0 and b = 1, hence

f≽′

(u) = f≽(u) for all u ∈ [0, zm].

Therefore, all EOs in RI(≽) share the same function f . Given that the definition of RI(≽) only depends
on the absolute threshold za and the intercept zm, equation (35) becomes

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

f
(

eB≽(yi, y), z
m, za

)

.

37 By definition of yB , for all ≽∈ R and all ≽′∈ RI (≽) we have that yB = yB
′
.
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For a given ≽, let function em≽ be the equivalent income at ym. By Priority to Income below za and
Homotheticity above za and the definitions of ym and of the equivalent income function at ym we have
that

em≽ (yi, y) = eB≽(yi, y) for all (yi, y) ∈ X,

and hence

P̂ (y,≽) :=
1

n(y)

n(y)
∑

i=1

f
(

em≽ (yi, y), z
m, za

)

. (36)

I prove the properties of function f stated in Theorem 4. Function f is strictly decreasing in its first
argument on [0, z(ym)], f(0, z(ym), za) = 1, f(b, z(ym), za) = 0 for all b ≥ z(ym) because f inherits these
properties from the numerical representation d≽.

Using Weak monotonicity in absolute threshold , I show that function f is non-decreasing in its third
argument. Assume to the contrary that there exist m > 0, a ∈ [0,m] and e ∈ [0,m] such that f is strictly
decreasing in its third argument at (e,m, a). This assumption implies that for some a′ ∈ (a,m) we have
that

f(e,m, a) > f(e,m, a′).

Consider any ≽∈ R such that Za(≽) = a and z = Z(≽) such that zm = m. By Non-zero Threshold,
this ≽ exists. Consider now ≽′∈ R such that Z(≽′) = Z(≽) and Za(≽′) = a′. Consider the income
distribution yB = (e, e, 3yB − 2e), which belongs to Y (≽) ∩ Y (≽′). By Weak monotonicity in absolute
threshold , we must have that

P (yB,≽) ≤ P (yB,≽′),

which by (36) yields

2

3
f(e,m, a) ≤

2

3
f(e,m, a′),

which contradicts the assumption that f(e,m, a) > f(e,m, a′).

Statement 2 implies statement 1.

I only show that an index meeting the description in statement 2 satisfies Line relativism independence
in poor societies . The proof for the other two properties follows similar lines.

Consider any two ≽,≽′∈ R where z = Z(≽) and z′ = Z(≽′) and za = Za(≽) and za
′

= Za(≽′). If
either zm ̸= zm

′

or za ̸= za
′

, then Line relativism independence in poor societies is trivially satisfied for
these two EOs. Therefore, I focus on the case for which zm = zm

′

and za = za
′

.
Take any two y, y′ ∈ Y (≽) ∩ Y (≽′) with n(y) = n(y′) and y = y′ ≤ min{ym, ym

′

}. Line relativism
independence in poor societies implies that if P meets the description in statement 2, then we have

P (y,≽) ≥ P (y′,≽) ⇔ P (y,≽′) ≥ P (y′,≽′), (37)

which I shown in the remainder of this proof.
For all ≽∈ R, y ≤ ym and a ∈ [0, zm], the definition of the equivalent income function em≽ and Flat

Line in Poor Societies imply that

em≽ (a, y) = a.

Therefore, given that y = y′ ≤ min{ym, ym
′

}, we have that

em≽ (yi, y) = em≽′(yi, y),

for all i ≤ q(y) and

em≽ (y′i, y
′) = em≽′(y′i, y

′),
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for all i ≤ q(y′). Remembering that f (b, zm, za) = 0 if b ≥ zm, this implies that

P̂ (y,≽) =
1

n(y)

n(y)
∑

i=1

f
(

em≽ (yi, y), z
m, za

)

=
1

n(y)

n(y)
∑

i=1

f
(

em≽′(yi, y), z
m′

, za
′
)

= P̂ (y,≽′),

given that function f only depends on the EO via its arguments, as well as

P̂ (y′,≽) =
1

n(y′)

n(y′)
∑

i=1

f
(

em≽ (y′i, y
′), zm, za

)

=
1

n(y′)

n(y′)
∑

i=1

f
(

em≽′(y′i, y
′), zm

′

, za
′
)

= P̂ (y′,≽′),

which shows that (37) holds, hence Line relativism independence in poor societies holds.

7.7 Proof of Theorem 5

I derive the lower-bound on function f given in (11). To do so, I extend the proof of Ebert and Moyes
(2002) in order to show that

f
(

em≽ (yi, y), z(y
m), 0

)

=

(

1−
em≽ (yi, y)

z(ym)

)α0

.

Consider the subset Rf
0 of EOs in R whose poverty line is flat and absolute threshold is zero. Formally,

Rf
0 := {≽∈ R|Za(≽) = 0 and Z(≽) is flat}.

Any ≽∈ Rf
0 with z = Z(≽) is such that

• z(y) = z∗ ∈ R++ for all y ≥ 0 and

• Za(≽) = 0.

In particular, any ≽∈ Rf
0 is such that for all (yi, y) ∈ Xp(≽) we have

em≽ (yi, y) = yi.

Take any n ≥ 3. Let Y n(≽) ⊂ Y (≽) be the subset of income distributions of size n. Formally, I
define

Y n(≽) := {y ∈ Y (≽)|n(y) = n}.

By assumption, index P is ordinally equivalent to (10), which becomes for all ≽∈ Rf
0 and all y ∈

Y n(≽)

P̂ (y,≽) :=
1

n

n∑

i=1

f (yi, z
∗, 0) ,

where f (yi, z∗, 0) = 0 for all yi > z∗.
Ignoring the constant 0 in the definition of f , the previous equation becomes

P̂ (y, z∗) :=
1

n

n∑

i=1

f (yi, z
∗) , (38)

and holds for all ≽∈ Rf
0 , where z∗ = z(ym).

In the next steps of the proof, I define a particular transformation o of index P̂ on the domain Rf
0 and

derives the properties of representation o when P̂ satisfies Scale consistency and Translation consistency.
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Definition of particular representation

Given ≽∈ Rf
0 , let distribution ya be defined such that all but the richest individual earn a ∈ [0, z∗] and

the richest individual’s income is such that mean income is equal to yB = z∗:

ya :=
(

a, . . . , a, nyB − (n− 1)a
)

.

Let o : ∪
≽∈R

f
0
Y n(≽) × R++ → [0, z∗] be an increasing transformation of the poverty index P̂ im-

plicitely defined by38

P̂ (yo, z∗) = P̂ (y, z∗),

for all ≽∈ Rf
0 and all y ∈ Y n(≽). Given the definition of P̂ , the implicit definition of o(y, z∗) is such

that

n− 1

n
f (o(y, z∗), z∗) =

1

n

n
∑

i=1

f (yi, z
∗) ,

or yet, since individual n is non-poor for all y ∈ Y n(≽) and f (z∗, z∗) = 0

o(y, z∗) = f−1

(

1

n− 1

n−1
∑

i=1

f (yi, z
∗) , z∗

)

. (39)

Function o is a well-defined numerical representation since for all ≽∈ Rf
0 and all y ∈ Y n(≽)

1. there exists a value o(y, z∗) ∈ [0, z∗] such that

P̂ (yo, z∗) = P̂ (y, z∗)

2. we have that yo ∈ Y n(≽).

First, I prove property 2 assuming that property 1 holds. By Flat Line in Poor Societies, the income
distribution yz

∗

, which is

(

z∗, . . . , z∗, nyB − (n− 1)z∗
)

,

belongs to Y n(≽) since individual n is non-poor: nyB − (n − 1)z∗ = z∗. As a result, the income
distribution yo belongs to Y n(≽) for all o < z∗ and hence all o ∈ [0, z∗].

Second, I prove property 1. Given the properties of function f specified in the statement of Theorem
4, For all ≽∈ R and all y ∈ Y n(≽) we have that

P̂ (y,≽) ∈

[

0,
n− 1

n

]

.

By definition of P̂ , we have for all ≽∈ Rf
0 that

P̂ (yo,≽) = 0 if o = z∗,

P̂ (yo,≽) =
n− 1

n
if o = 0.

By continuity of function f and equation (39), there exists a value of o ∈ [0, z∗] such that P (y,≽) =
P (yo,≽) for all y ∈ Y n(≽).

Since f is strictly increasing in its first argument and f(b, z∗) = 0 for all b ≥ z∗, we have that

y1 ≤ o(y, z∗) ≤ z∗ ≤ yn.
38 Representation o is not a numerical representation as defined above, since, given ≽ its image set is [0, z∗] ̸= [0, 1].
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Properties of representation o

Lemmas 4 and 5 derive the properties of o(y, z∗) when its associated index P satisfies Translation
consistency and Scale consistency.

Lemma 4. Let P be and index ordinally equivalent to (10) that satisfies Scale consistency. For all
≽∈ Rf

0 , its associated representation o(y, z∗) is such that

o(y×λ,λz∗) = λo(y, z∗),

for all y ∈ Y n(≽) and all λ > 0 such that ≽×λ∈ R, y×λ ∈ Y n(≽×λ) and yλo ∈ Y n(≽×λ).39

Proof. Take any ≽∈ Rf
0 , y ∈ Y n(≽) and λ > 0. By the definition of o(y, z∗) we have that

P̂ (y,≽) = P̂ (yo,≽), (40)

if o = o(y, z∗).
Let the transformation yλo of yo be defined as:

yλo :=
(

λo, . . . ,λo, nyB − (n− 1)λo
)

.

Equation (40) and the previous definition imply by Scale consistency that

P̂ (y×λ,≽×λ) = P̂ (yλo,≽×λ). (41)

By definition of o(y, z∗) we have that

P̂ (y×λ,≽×λ) = P̂ (y×λo

,≽×λ), (42)

where y×λo

corresponds to the income distribution for which all but the richest individual earn o(y×λ,λz∗).
By transitivity we have that

P̂ (y×λo

,≽×λ) = P̂ (yλo,≽×λ).

By monotonicity, this implies that

o(y×λ,λz∗) = λo(y, z∗).

!

Importantly, for all ≽∈ R and all y ∈ Y n(≽), if λ ∈ (0, 1], then we have that ≽×λ∈ R, y×λ ∈ Y n(≽×λ)
and yλo ∈ Y n(≽×λ). Lemma 5 derives a parallel property for poverty indices satisfying Translation
consistency.

Lemma 5. Let P be and index ordinally equivalent to (10) that satisfies Translation consistency. For
all ≽∈ Rf

0 , its associated representation o(y, z∗) is such that

o(y+δ, z∗ + δ) = o(y, z∗) + δ,

for all y ∈ Y n(≽) and all δ ∈ R such that ≽+δ∈ R, y+δ ∈ Y n(≽+δ) and yo+δ ∈ Y n(≽+δ).40

Proof. Similar to the proof of Lemma 4 and hence omitted. !

39As defined in the proof, the income distribution yλo is

yλo :=
(

λo, . . . ,λo, nyB − (n− 1)λo
)

.

40The income distribution yo+δ is defined as

yo+δ :=
(

o+ δ, . . . , o+ δ, nyB − (n− 1)(o+ δ)
)

.
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Reproduce the reasoning of Ebert and Moyes (2002)

In this section, I show that if P is and index ordinally equivalent to (10) that satisfies Translation
consistency and Scale consistency, then for all ≽∈ Rf

0 and all y ∈ Y n(≽) its function f is such that

f(t, z) =

⎧

⎨

⎩

(
z−t
z

)α
for all t ≤ z

0 for all t > z
(43)

for some α > 0.‘
The proof is lengthy and based on functional equation arguments exploiting the properties derived

in Lemmas 4 and 5.
Consider any ≽∈ Rf

0 (hence, any z = z∗ ∈ R++). Choose ϵ with 0 < ϵ < z and pick y ∈ Y n(≽) such
that z − ϵ ≤ yi ≤ z for all i ≤ n− 1 and y ≥ z. By Lemma 4, we have that

o(y×λ,λz) = λo(y, z),

which by (39) is equivalent to

f−1

(

1

n− 1

n−1
∑

i=1

f (λyi,λz) ,λz

)

= λf−1

(

1

n− 1

n−1
∑

i=1

f (yi, z) , z

)

,

provided ≽×λ∈ R, y×λ ∈ Y n(≽×λ) and yλo ∈ Y n(≽×λ). Set λ := ϵ
z < 1, which guarantees that

≽×λ∈ R, y×λ ∈ Y n(≽×λ) and yλo ∈ Y n(≽×λ) when ≽∈ Rf
0 and y ∈ Y n(≽) such that z− ϵ ≤ yi ≤ z for

all i ≤ n− 1 and y ≥ z.41

Replacing λ in the previous equation by its new expression yields

z

ϵ
f−1

(

1

n− 1

n−1
∑

i=1

f
( ϵ

z
yi, ϵ

)

, ϵ

)

= f−1

(

1

n− 1

n−1
∑

i=1

f (yi, z) , z

)

. (44)

Similarly, by Lemma 5 we have that

o(y+δ, z + δ) = o(y, z) + δ,

which by (39) is equivalent to

f−1

(

1

n− 1

n−1
∑

i=1

f (yi + δ, z + δ) , z + δ

)

= f−1

(

1

n− 1

n−1
∑

i=1

f (yi, z) , z

)

+ δ,

provided that ≽+δ∈ R, y+δ ∈ Y n(≽+δ) and yo+δ ∈ Y n(≽+δ). Set δ := ϵ − z, which guarantees that
≽+δ∈ R, y+δ ∈ Y n(≽+δ) and yo+δ ∈ Y n(≽+δ) when ≽∈ Rf

0 , δ ∈ (−z, 0) and y ∈ Y n(≽) such that
z − ϵ ≤ yi ≤ z for all i ≤ n− 1 and y ≥ z.42

Replacing δ in the previous equation by its new expression yields

f−1

(

1

n− 1

n−1
∑

i=1

f (yi + ϵ − z, ϵ) , ϵ

)

+ z − ϵ = f−1

(

1

n− 1

n−1
∑

i=1

f (yi, z) , z

)

. (45)

Combining (44) and (45) yields

z

ϵ
f−1

(

1

n− 1

n−1
∑

i=1

f
( ϵ

z
yi, ϵ

)

, ϵ

)

= f−1

(

1

n− 1

n−1
∑

i=1

f (yi + ϵ− z, ϵ) , ϵ

)

+ z − ϵ. (46)

Now I introduce

Fϵ,z(t) :=f
( ϵ

z
t, ϵ
)

,

Gϵ,z(t) :=f(t+ ϵ− z, ϵ),

41 In particular, we have that ≽×λ∈ R
f
0 with z∗ = λz < z and Za(≽×λ) = Za(≽) = 0.

42 In particular, we have that ≽+δ∈ R
f
0 with z∗ = z + δ < z and Za(≽+δ) = Za(≽) = 0.
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for t ∈ [z − ϵ, z].
From these definitions

F−1
ϵ,z (u) =

z

ϵ
f−1 (u, ϵ) for u ∈ [h, k] = Imagef

([ ϵ

z
(z − ϵ), ϵ

])

,

G−1
ϵ,z(u) = f−1 (u, ϵ) + z − ϵ for u ∈ [h1, k1] = Imagef ([0, ϵ] , ϵ) .

By definition [h, k] ⊂ [h1, k1] since ϵ
z (z − ϵ) > 0 and from (46) and these definitions we have

F−1
ϵ,z

(

1

n− 1

n−1
∑

i=1

Fϵ,z(yi)

)

= G−1
ϵ,z

(

1

n− 1

n−1
∑

i=1

Gϵ,z(yi)

)

.

I apply Theorem 2 in (Aczel (1966), p.290) and obtain

F−1
ϵ,z (u) = G−1

ϵ,z(ru + s) for u ∈ [h, k],

where r = r(ϵ, z) and s = s(ϵ, z) and therefore

z

ϵ
f−1 (u, ϵ) = f−1 (ru+ s, ϵ) + z − ϵ,

which can be rearranged to

z

ϵ

(

f−1 (u, ϵ)− ϵ
)

= f−1 (ru + s, ϵ)− ϵ,

or, introducing g−1 (u, ϵ) = f−1 (u, ϵ)− ϵ we have

z

ϵ

(

g−1 (u, ϵ)
)

= g−1 (ru + s, ϵ) .

Replacing u by g(v, ϵ) yields

z

ϵ
v = g−1 (rg(v, ϵ) + s, ϵ) ,

or

g
(z

ϵ
v, ϵ
)

= rg(v, ϵ) + s for all v ∈
[ ϵ

z
(z − ϵ)− ϵ, 0

]

.

Now I insert v = 0 and get g(0, ϵ) = rg(0, ϵ), i.e.

s = (1 − r)g(0, ϵ).

Therefore,

g
(z

ϵ
v, ϵ
)

= rg(v, ϵ) + (1− r)g(0, ϵ),

and hence

g
(z

ϵ
v, ϵ
)

− g(0, ϵ) = r(ϵ, z)(g(v, ϵ)− g(0, ϵ)). (47)

The previous equation "factors" a function of a product between z and v into a product of two
functions, one of which depends on z and the other on v. I define three new functions H , F and G, some
of which depend on the new variable w = −v in the following way

H(w) :=g
(

−
w

ϵ
, ϵ
)

− g(0, ϵ) for w ∈
[

0,−
ϵ

z
(z − ϵ) + ϵ

]

, (48)

F (z) :=r(ϵ, z), (49)

G(w) :=g(−w, ϵ)− g(0, ϵ). (50)

With these definitions, (47) becomes

H(zw) = F (z)G(w).
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The solution to the previous equation is given by Theorem 4 (Aczel (1966), p.144):

H(w) =abwα, (51)

F (z) =bzα, (52)

G(w) =awα. (53)

Using (48), (50), (51) and (53) we get b = ϵ−α and therefore43

r(ϵ, z) = ϵ−αzα.

In summary, using (50), (53) and the fact that w = −v we get

g(v, ϵ) = a(ϵ)(−v)α(ϵ) + b(ϵ),

r(ϵ, z) = ϵ−α(ϵ)zα(ϵ),

and given that g−1 (u, ϵ) = f−1 (u, ϵ)− ϵ we have

f(t, ϵ) = g(t− ϵ, ϵ) = a(ϵ)(ϵ − t)α(ϵ) + b(ϵ),

where b(ϵ) = g(0, ϵ) for all t ∈
[
ϵ
z
(z − ϵ), ϵ

]

, and α(ϵ) > 0 and a(ϵ) > 0 since f has to be well-defined and
strictly decreasing in t.

These considerations can be made for every ϵ with 0 < ϵ < z and every z ∈ R++ (hence every ≽∈ Rf
0 ).

Given that44

f−1(u, ϵ) = ϵ + g−1(u, ϵ) = ϵ−

(
u− b(ϵ)

a(ϵ)

) 1
α(ϵ)

,

and remembering that ϵ is a transformation of z yields

o(y, z) = f−1

(

1

n− 1

n−1
∑

i=1

f (yi, z) , z

)

= z −

(

1

n− 1

n−1
∑

i=1

(z − yi)
α(z)

) 1
α(z)

From Lemma 4, we have that o(y×λ,λz) = λo(y, z) and thus

λz −

(

1

n− 1

n−1∑

i=1

(λz − λyi)
α(λz)

) 1
α(λz)

= λ

⎡

⎣z −

(

1

n− 1

n−1∑

i=1

(z − yi)
α(z)

) 1
α(z)

⎤

⎦ .

This implies that α(λz) = α(z) = α and therefore

f(yi, z) = a(z)(z − yi)
α − b(z).

For the case yi = z the previous equation becomes f(z, z) = b(z), which implies that b(z) = 0 since
f(z, z) = 0 (from (10)). Furthermore, for the case yi = 0, we have f(0, z) = a(z)zα, which implies that
a(z) = z−α since f(0, z) = 1 (from (10) again). Therefore, we have

f(yi, z) =

(
z − yi

z

)α

.

Bounds in Theorem 5

The exponential expression of (43) is obtained for all ≽∈ Rf
0 . By (10), this expression is valid for all

≽∈ R0, where

R0 := {≽∈ R|Za(≽) = 0},

given that function f does not depend on the particular EO considered beyond its arguments. This
proves the lower-bound on function f .

The exponential upper-bound on f is obtained using a parallel argument. The lower-bound is as-
sociated to α0 > 0 and the upper-bound to α1 > 0. Given that expression (10) requires that f is
non-decreasing in za, this implies that α0 ≥ α1 > 0.

43 The definitions imply that H(w) = G
(

w
ϵ

)

and hence abwα = a
(

w
ϵ

)α
.

44 The following expression is obtained by inversing g(v, ϵ) = u.
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8 Index satisfying Scale consistency and Translation consistency

Assume that index P is defined as

P (y,≽) :=
1

n(y)

q(y)
∑

i=1

(

1−
em≽ (yi, y)

zm

)α

,

with α > 0. I prove that P satisfies Translation consistency.
Take any ≽∈ R and any two x, y ∈ Y (≽) with x = y. Assume that

P (x,≽) ≥ P (y,≽),

which is

1

n(x)

q(x)
∑

i=1

(

1−
em≽ (xi, x)

zm

)α

≥
1

n(y)

q(y)
∑

i=1

(

1−
em≽ (yi, y)

zm

)α

,

or

1

n(x)(zm)α

q(x)
∑

i=1

(

zm − em≽ (xi, x)
)α

≥
1

n(y)(zm)α

q(y)
∑

i=1

(

zm − em≽ (yi, y)
)α

,

or still

1

n(x)

q(x)
∑

i=1

(

zm − em≽ (xi, x)
)α

≥
1

n(y)

q(y)
∑

i=1

(

zm − em≽ (yi, y)
)α

. (54)

I show that

P (x+δ,≽+δ) ≥ P (y+δ,≽+δ),

which is

1

n(x)

q(x)
∑

i=1

(

1−
em
≽+δ(xi + δ, x)

zm + δ

)α

≥
1

n(y)

q(y)
∑

i=1

(

1−
em
≽+δ(yi + δ, y)

zm + δ

)α

.

Given that the transformation ≽+δ is such that

em≽+δ(yi + δ, y) = em≽ (yi, y) + δ,

the previous equation is rewritten

1

n(x)(zm + δ)α

q(x)
∑

i=1

(

zm − em≽ (xi, x)
)α

≥
1

n(y)(zm + δ)α

q(y)
∑

i=1

(

zm − em≽ (yi, y)
)α

,

which, by (54), yields the desired result. Scale consistency is proven using a parallel argument.

9 Proof of Theorem 6

This proof is in two steps. In step 1, I show that f0 := f
(

em≽ (yi, y), z(ym), 0
)

satisfies Monotonicity in
Income only if α0 = 1. In step 2, I show using Transfer that f has the same expression as that of f0 for
all other values of za. In step 3, I show that the index proposed satisfies both Monotonicity in Income
and Transfer .
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Step 1: Monotonicity in Income only for linear expression for f0

By Theorem 5, any index P ordinally equivalent to (10) satisfies Scale consistency and Translation
consistency only if for all (yi, y) ∈ X we have

f0
(

em≽ (yi, y), z
m
)

:= f
(

em≽ (yi, y), z
m, 0

)

=

(

1−
em≽ (yi, y)

zm

)α

where α > 0. Appendix 8 shows that this condition is sufficient for P to satisfy Scale consistency and
Translation consistency at least on the restricted domain R0, where

R0 := {≽∈ R|Za(≽) = 0}.

Consider any ≽∈ R0 for which z = Z(≽) is a weakly relative line of slope s > 0.
Theorem 2 shows that any additive P whose numerical representation is almost everywhere differen-

tiable satisfies Monotonicity in Income on R0 if and only if for all y ≥ ym, a ∈ [0, z(y)) and b ∈ (za, z(y)],
we have:

∂f0
(

em≽ (b, y), zm
)

∂y
≤ −

∂f0
(

em≽ (a, y), zm
)

∂yi
(55)

Given its exponential form, for all y ∈ Y (≽) and all i ≤ q(y) the partial derivative of f0 with respect
to own income is:

∂f0
(

em≽ (yi, y), zm
)

∂yi
= −

α

zm

(

1−
em≽ (yi, y)

zm

)α−1
zm − za

z(y)− za
. (56)

For all y ∈ Y (≽) and all i ≤ q(y), the partial derivative of f0 with respect to mean income is:

∂f0
(

em≽ (yi, y), zm
)

∂y
= −

∂z(y)

∂y

yi − za

z(y)− za
∂f0

(

em≽ (yi, y), zm
)

∂yi
, (57)

where ∂z(y)
∂y

= s given that y ≥ ym and the definition of a weakly relative line. Observe that the previous

expression holds as well for any non-poor individual i who earns an income yi = z(y), because s > 0.45

Given (56) and (57), condition (55) becomes

s
b

z(y)
≤

(

zm − em≽ (a, y)

zm − em≽ (b, y)

)α−1

. (58)

I show that Monotonicity in Income is violated on R0 if α ̸= 1. Two cases must be considered.

• Case 1: 0 < α < 1.
For any a ∈ [0, z(y)) there exists a value b ∈ [a, z(y)) such that if b ≥ b, the necessary condition for
Monotonicity in Income expressed in (58) is violated.

As b tends to z(y) we have that the left-hand-side of (58) tends to s and the right-hand-side of
(58) tends to 0 as em≽ (b, y) tends to zm and α < 1.

• Case 2: α > 1.
For any b ∈ (za, z(y)) there exists a value a ∈ [b, z(y)) such that if a ≥ a, the necessary condition
for Monotonicity in Income expressed in (58) is violated.

As a tends to z(y) we have that the right-hand-side of (58) tends to 0 as em≽ (a, y) tends to zm and
α > 1.

Step 2: Transfer only if f = f0 for all za

In step 1, I show that any index P ordinally equivalent to (10) that satisfies Scale consistency and
Translation consistency violates Monotonicity in Income on R0 except if

f
(

em≽ (yi, y), z
m, 0

)

=

(

1−
em≽ (yi, y)

zm

)

45Its expression is defined in equation (57) as limx→y− ∂1f0
(

em≽ (yi, x), zm
)

∂2em≽ (yi, x).
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Theorem 4 shows that for all za ∈ [0, zm] and all e ∈ [0, zm] we have

f (e, zm, 0) =
(

1−
e

zm

)

≤ f (e, zm, za) . (59)

A direct corollary of the condition for Transfer derived in Theorem 3 is that for all za ∈ [0, zm] and
all e ∈ [0, zm] we have

(

1−
e

zm

)

≥ f (e, zm, za) . (60)

Together, (59) and (60) implies for all za ∈ [0, zm] that

f
(

em≽ (yi, y), z
m, za

)

=

(

1−
em≽ (yi, y)

zm

)

. (61)

Step 3: The index satisfies Monotonicity in Income and Transfer

There remain to show that the index defined by (10) and (61) satisfies both Monotonicity in Income
and Transfer . I show that the necessary and sufficient conditions derived in Theorems 2 and 3 are met.
These conditions are based on the partial derivatives fo this index (whose numerical representation is
almost everywhere differentiable). For all ≽∈ R, y ∈ Y (≽) and all i ≤ q(y) the partial derivative with
respect to own income is:

∂f
(

em≽ (yi, y), zm, za
)

∂yi
= −

1

zm
if yi < za, (62)

and

∂f
(

em≽ (yi, y), zm, za
)

∂yi
= −

1

zm
zm − za

z(y)− za
if za ≤ yi ≤ z(y). (63)

Regarding the partial derivative with respect to mean income, we have

∂f0
(

em≽ (yi, y), zm
)

∂y
= 0 if yi ≤ za, (64)

and

∂f0
(

em≽ (yi, y), zm
)

∂y
=

∂z(y)

∂y

yi − za

z(y)− za
1

zm
zm − za

z(y)− za
if za < yi ≤ z(y). (65)

The condition for Transfer derived in 3 amounts to requiring that for all a, b with 0 ≤ a < b < zm

we have that

∂1f (a, zm, za) ≤ ∂1f (b, zm, za) ,

which is guaranteed by (62) and (63) since given that a < b we have either

∂1f (a, zm, za) = ∂1f (b, zm, za) ,

if a < b ≤ za or if za ≤ a < b, or we have

∂1f (a, zm, za) =
zm − za

z(y)− za
∂1f (b, zm, za) ,

if a < za < b.
The condition for Monotonicity in Income derived in 2 amounts to requiring that for all ≽∈ R, all

y > ym, all a ∈ [0, z(y)) and all b ∈ (za, < z(y) we have that

∂2f
(

em≽ (b, y), zm, za
)

≤ −∂1f
(

em≽ (a, y), zm, za
)

.

Given that z(y) ≥ zm, (62) and (63) show that

1

zm
zm − za

z(y)− za
≤ −∂1f

(

em≽ (a, y), zm, za
)

.
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Equation (65) show that

∂2f
(

em≽ (b, y), zm, za
)

≤
∂z(y)

∂y

b− za

z(y)− za
1

zm
zm − za

z(y)− za
.

Together, the sufficient condition for Monotonicity in Income holds if

∂z(y)

∂y

b − za

z(y)− za
≤ 1,

which is the case as b ≤ z(y) and ∂z(y)
∂y

≤ 1 by Positive Slope less than One.
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